Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (14)
  • Open Access

    ARTICLE

    Proposed Biometric Security System Based on Deep Learning and Chaos Algorithms

    Iman Almomani1,2, Walid El-Shafai1,3,*, Aala AlKhayer1, Albandari Alsumayt4, Sumayh S. Aljameel5, Khalid Alissa6

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3515-3537, 2023, DOI:10.32604/cmc.2023.033765

    Abstract Nowadays, there is tremendous growth in biometric authentication and cybersecurity applications. Thus, the efficient way of storing and securing personal biometric patterns is mandatory in most governmental and private sectors. Therefore, designing and implementing robust security algorithms for users’ biometrics is still a hot research area to be investigated. This work presents a powerful biometric security system (BSS) to protect different biometric modalities such as faces, iris, and fingerprints. The proposed BSS model is based on hybridizing auto-encoder (AE) network and a chaos-based ciphering algorithm to cipher the details of the stored biometric patterns and ensures their secrecy. The employed… More >

  • Open Access

    ARTICLE

    Profiling Astronomical Objects Using Unsupervised Learning Approach

    Theerapat Sangpetch1, Tossapon Boongoen1,*, Natthakan Iam-On2

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1641-1655, 2023, DOI:10.32604/cmc.2023.026739

    Abstract Attempts to determine characters of astronomical objects have been one of major and vibrant activities in both astronomy and data science fields. Instead of a manual inspection, various automated systems are invented to satisfy the need, including the classification of light curve profiles. A specific Kaggle competition, namely Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC), is launched to gather new ideas of tackling the abovementioned task using the data set collected from the Large Synoptic Survey Telescope (LSST) project. Almost all proposed methods fall into the supervised family with a common aim to categorize each object into one of pre-defined… More >

  • Open Access

    ARTICLE

    An Efficient Unsupervised Learning Approach for Detecting Anomaly in Cloud

    P. Sherubha1,*, S. P. Sasirekha2, A. Dinesh Kumar Anguraj3, J. Vakula Rani4, Raju Anitha3, S. Phani Praveen5,6, R. Hariharan Krishnan5,6

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 149-166, 2023, DOI:10.32604/csse.2023.024424

    Abstract The Cloud system shows its growing functionalities in various industrial applications. The safety towards data transfer seems to be a threat where Network Intrusion Detection System (NIDS) is measured as an essential element to fulfill security. Recently, Machine Learning (ML) approaches have been used for the construction of intellectual IDS. Most IDS are based on ML techniques either as unsupervised or supervised. In supervised learning, NIDS is based on labeled data where it reduces the efficiency of the reduced model to identify attack patterns. Similarly, the unsupervised model fails to provide a satisfactory outcome. Hence, to boost the functionality of… More >

  • Open Access

    ARTICLE

    P-ROCK: A Sustainable Clustering Algorithm for Large Categorical Datasets

    Ayman Altameem1, Ramesh Chandra Poonia2, Ankit Kumar3, Linesh Raja4, Abdul Khader Jilani Saudagar5,*

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 553-566, 2023, DOI:10.32604/iasc.2023.027579

    Abstract Data clustering is crucial when it comes to data processing and analytics. The new clustering method overcomes the challenge of evaluating and extracting data from big data. Numerical or categorical data can be grouped. Existing clustering methods favor numerical data clustering and ignore categorical data clustering. Until recently, the only way to cluster categorical data was to convert it to a numeric representation and then cluster it using current numeric clustering methods. However, these algorithms could not use the concept of categorical data for clustering. Following that, suggestions for expanding traditional categorical data processing methods were made. In addition to… More >

  • Open Access

    ARTICLE

    Printed Surface Defect Detection Model Based on Positive Samples

    Xin Zihao1, Wang Hongyuan1,*, Qi Pengyu1, Du Weidong2, Zhang Ji1, Chen Fuhua3

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5925-5938, 2022, DOI:10.32604/cmc.2022.026943

    Abstract For a long time, the detection and extraction of printed surface defects has been a hot issue in the print industry. Nowadays, defect detection of a large number of products still relies on traditional image processing algorithms such as scale invariant feature transform (SIFT) and oriented fast and rotated brief (ORB), and researchers need to design algorithms for specific products. At present, a large number of defect detection algorithms based on object detection have been applied but need lots of labeling samples with defects. Besides, there are many kinds of defects in printed surface, so it is difficult to enumerate… More >

  • Open Access

    ARTICLE

    Feature Selection for Cluster Analysis in Spectroscopy

    Simon Crase1,2, Benjamin Hall2, Suresh N. Thennadil3,*

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2435-2458, 2022, DOI:10.32604/cmc.2022.022414

    Abstract Cluster analysis in spectroscopy presents some unique challenges due to the specific data characteristics in spectroscopy, namely, high dimensionality and small sample size. In order to improve cluster analysis outcomes, feature selection can be used to remove redundant or irrelevant features and reduce the dimensionality. However, for cluster analysis, this must be done in an unsupervised manner without the benefit of data labels. This paper presents a novel feature selection approach for cluster analysis, utilizing clusterability metrics to remove features that least contribute to a dataset's tendency to cluster. Two versions are presented and evaluated: The Hopkins clusterability filter which… More >

  • Open Access

    ARTICLE

    Prevention of Runtime Malware Injection Attack in Cloud Using Unsupervised Learning

    M. Prabhavathy1,*, S. UmaMaheswari2

    Intelligent Automation & Soft Computing, Vol.32, No.1, pp. 101-114, 2022, DOI:10.32604/iasc.2022.018257

    Abstract Cloud computing utilizes various Internet-based technologies to enhance the Internet user experience. Cloud systems are on the rise, as this technology has completely revolutionized the digital industry. Currently, many users rely on cloud-based solutions to acquire business information and knowledge. As a result, cloud computing services such as SaaS and PaaS store a warehouse of sensitive and valuable information, which has turned the cloud systems into the obvious target for many malware creators and hackers. These malicious attackers attempt to gain illegal access to a myriad of valuable information such as user personal information, password, credit/debit card numbers, etc., from… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning-Based Unsupervised Anomaly Detection in High Dimensional Data

    Amgad Muneer1,2,*, Shakirah Mohd Taib1,2, Suliman Mohamed Fati3, Abdullateef O. Balogun1, Izzatdin Abdul Aziz1,2

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5363-5381, 2022, DOI:10.32604/cmc.2022.021113

    Abstract Anomaly detection in high dimensional data is a critical research issue with serious implication in the real-world problems. Many issues in this field still unsolved, so several modern anomaly detection methods struggle to maintain adequate accuracy due to the highly descriptive nature of big data. Such a phenomenon is referred to as the “curse of dimensionality” that affects traditional techniques in terms of both accuracy and performance. Thus, this research proposed a hybrid model based on Deep Autoencoder Neural Network (DANN) with five layers to reduce the difference between the input and output. The proposed model was applied to a… More >

  • Open Access

    ARTICLE

    A Tradeoff Between Accuracy and Speed for K-Means Seed Determination

    Farzaneh Khorasani1, Morteza Mohammadi Zanjireh1,*, Mahdi Bahaghighat1, Qin Xin2

    Computer Systems Science and Engineering, Vol.40, No.3, pp. 1085-1098, 2022, DOI:10.32604/csse.2022.016003

    Abstract With a sharp increase in the information volume, analyzing and retrieving this vast data volume is much more essential than ever. One of the main techniques that would be beneficial in this regard is called the Clustering method. Clustering aims to classify objects so that all objects within a cluster have similar features while other objects in different clusters are as distinct as possible. One of the most widely used clustering algorithms with the well and approved performance in different applications is the k-means algorithm. The main problem of the k-means algorithm is its performance which can be directly affected… More >

  • Open Access

    ARTICLE

    Cluster Analysis for IR and NIR Spectroscopy: Current Practices to Future Perspectives

    Simon Crase1,2, Benjamin Hall2, Suresh N. Thennadil3,*

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 1945-1965, 2021, DOI:10.32604/cmc.2021.018517

    Abstract Supervised machine learning techniques have become well established in the study of spectroscopy data. However, the unsupervised learning technique of cluster analysis hasn’t reached the same level maturity in chemometric analysis. This paper surveys recent studies which apply cluster analysis to NIR and IR spectroscopy data. In addition, we summarize the current practices in cluster analysis of spectroscopy and contrast these with cluster analysis literature from the machine learning and pattern recognition domain. This includes practices in data pre-processing, feature extraction, clustering distance metrics, clustering algorithms and validation techniques. Special consideration is given to the specific characteristics of IR and… More >

Displaying 1-10 on page 1 of 14. Per Page  

Share Link