Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (177)
  • Open Access

    ARTICLE

    Shear Deformation Effect in Second-Order Analysis of Composite Frames Subjected in Variable Axial Loading by BEM

    E.J. Sapountzakis1, V.G. Mokos1

    Structural Durability & Health Monitoring, Vol.2, No.4, pp. 207-224, 2006, DOI:10.3970/sdhm.2006.002.207

    Abstract In this paper a boundary element method is developed for the second-order analysis of frames consisting of composite beams of arbitrary constant cross section, taking into account shear deformation effect. The composite beam consists of materials in contact, each of which can surround a finite number of inclusions. The materials have different elasticity and shear moduli with same Poisson's ratio and are firmly bonded together. Each beam is subjected in an arbitrarily concentrated or distributed variable axial loading, while the shear loading is applied at the shear center of the cross section, avoiding in this way the induction of a… More >

  • Open Access

    ARTICLE

    Numerical Analysis of Tilted Cutting and F128 Brushes

    Libardo V. Vanegas-Useche1,4, Magd M. Abdel-Wahab2,3,*, Graham A. Parker5

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.1, pp. 23-47, 2019, DOI:10.32604/cmes.2019.06481

    Abstract Road sweeping is an essential service that has to be conducted for public health, as well as aesthetic purposes. In many countries, sweeping vehicles are used for this activity. They usually comprise a gutter brush that sweeps the debris that is located in the road gutter. This work studies the performance of two kinds of gutter brushes: a cutting brush and a flicking (F128) brush. This is carried out by means of a 3-D dynamic, nonlinear Finite Element (FE) brush model developed by the authors. In this model, inertia forces are applied to the bristle, and its clamped end is… More >

  • Open Access

    ARTICLE

    Effect of synthesis variables of plasma synthesized polymers on growth of HepG2 cells

    Elizabeth PÉREZ-TEJADA1,4*, Juan MORALES-CORONA3, Luis Ernesto GÓMEZ-QUIRÓZ2, María Concepción GUTIERREZ-RUIZ2, Roberto OLAYO3

    BIOCELL, Vol.41, No.2-3, pp. 41-44, 2017, DOI:10.32604/biocell.2017.41.041

    Abstract Low pressure plasma polymer films were synthesized using pyrrole and allylamine monomers and adding iodine was used (or not) for the reaction in both cases. They were polymerized on glass substrates under the same reaction conditions. Polymerization of allylamine was also studied at different operating powers. These thin polymer films were used as culture surfaces for HepG2 cells, a cell line derived from a human hepatoma. The proliferation, differentiation and two-dimensional propagation until obtaining monolayer of the cells was studied on the different synthetized films and correlations were established between the conditions of synthesis, the physicochemical characteristics obtained and the… More >

  • Open Access

    ARTICLE

    Mechanical Analysis of the Coupled Gas-Solid-Thermal Model during Rock Damage

    Cao Zhengzheng1, Zhou Yuejin1,2, Zhang Qi1, Wang Erqian1

    CMC-Computers, Materials & Continua, Vol.47, No.3, pp. 203-215, 2015, DOI:10.3970/cmc.2015.047.203

    Abstract Gas fracturing technology is the key to the exploration for unconventional petroleum resources and other engineering industries, so the research on the coupled gas-solid-thermal model during rock damage has the important significance to the development of gas fracturing technology. By introducing rock damage variable, the coupled gas-solid-thermal model during rock damage is established in this paper, besides, the rock damage constitutive is written with MATLAB software, which is embedded in the multi-physics coupling software COMSOL in the process of numerical computation. Based on this, the damage rule of rock mass around drilling under high pressure gas is analyzed. The results… More >

  • Open Access

    ARTICLE

    Solving the Nonlinear Variable Order Fractional Differential Equations by Using Euler Wavelets

    Yanxin Wang1, *, Li Zhu1, Zhi Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.2, pp. 339-350, 2019, DOI:10.31614/cmes.2019.04575

    Abstract An Euler wavelets method is proposed to solve a class of nonlinear variable order fractional differential equations in this paper. The properties of Euler wavelets and their operational matrix together with a family of piecewise functions are first presented. Then they are utilized to reduce the problem to the solution of a nonlinear system of algebraic equations. And the convergence of the Euler wavelets basis is given. The method is computationally attractive and some numerical examples are provided to illustrate its high accuracy. More >

  • Open Access

    ABSTRACT

    Shape optimization of nonlinear structure using adjoint variable approach and gradient-based Kriging method

    Zhenhan Yao, Yintao Wei

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.2, pp. 51-52, 2011, DOI:10.3970/icces.2011.016.051

    Abstract Shape optimization is very important in many engineering fields. As conventional engineering design, the shape optimization is generally based on the finite element analysis. Because many engineering strutures are related to different nonlinear problems in their working state, the analysis for each design sample is quite time consuming. For example for the shape optimization of automotive tires, it is related to the geometrical, material nonlinearity, and boundary nonlinearity caused by the contact problem. Therefore, the finite element analysis combined with sensitivity analysis to get more information for each design sample is a strategy usually adopted. For the sensitivity analysis, the… More >

  • Open Access

    ABSTRACT

    Investigation of Variable-order Fractional Wave Propagation in Granular Materials

    Wei Cai*, Hua Chen

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.4, pp. 80-80, 2019, DOI:10.32604/icces.2019.05672

    Abstract Recent decades have witnessed a fast growing research on the theory of wave propagation in granular materials because of its important applications of frequency dependent attenuation. Fractional calculus has been recognized as an efficient tool to model such kind of phenomena. This study firstly presented a survey of the frequency-dependent attenuated fractional wave models. To have a better understanding of the wave propagation in layered materials, the variable-order fractional wave equation is subsequently proposed on the basis of the corresponding viscoelastic constitutive equation. Numerical simulations compared with traditional models are presented by the implicit finite difference method to the efficiency… More >

  • Open Access

    ABSTRACT

    Multiscale simulation of crack propagation using variable-node finite elements

    Dongwoo Sohn1, Jae Hyuk Lim2, Young-Sam Cho3, Seyoung Im1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.10, No.2, pp. 53-54, 2009, DOI:10.3970/icces.2009.010.053

    Abstract A novel multiscale finite element (FE) scheme is proposed for a simulation of crack propagation in the heterogeneous media including randomly distributed microstructures, such as voids, rigid fibers. A fine scale mesh is employed to capture the singularity of the crack tip and the effect of microstructures at the vicinity of crack tip. On the other hand, a region far from the crack tip is composed of coarse scale mesh, wherein the effect of the microstructures is averaged through the homogenization theory. An interface between the fine scale mesh and the coarse scale mesh is connected by variable-node finite elements… More >

  • Open Access

    ARTICLE

    Dynamic Response Solution of Multi-Layered Pavement Structure Under FWD Load Appling the Precise Integration Algorithm

    Zejun Han1, Hongyuan Fang2,3,4,*, Juan Zhang5, Fuming Wang2,3,4

    CMC-Computers, Materials & Continua, Vol.59, No.3, pp. 853-871, 2019, DOI:10.32604/cmc.2019.03839

    Abstract The pavement layered structures are composed of surface layer, road base and multi-layered soil foundation. They can be undermined over time by repeated vehicle loads. In this study, a hybrid numerical method which can evaluate the displacement responses of pavement structures under dynamic falling weight deflectometer (FWD) loads. The proposed method consists of two parts: (a) the dynamic stiffness matrices of the points at the surface in the frequency domain which is based on the domain-transformation and dual vector form equation, and (b) interpolates the dynamic stiffness matrices by a continues rational function of frequency. The mixed variables formulation (MVF)… More >

  • Open Access

    ARTICLE

    Influence of Geometric Design Variable and Bone Quality on Stress Distribution for Zirconia Dental Implants-A 3D Finite Element Analysis

    Duraisamy Velmurugan1, Masilamany Santha Alphin1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.2, pp. 125-141, 2018, DOI:10.31614/cmes.2018.01817

    Abstract This study aims to investigate the effects of variable thread pitch on stress distribution in bones of different bone qualities under two different loading conditions (Vertical, and Horizontal) for a Zirconia dental implant. For this purpose, a three dimensional finite element model of the mandibular premolar section and three single threaded implants of 0.8 mm, 1.6 mm, 2.4 mm pitch was designed. Finite element analysis software was used to develop the model and three different bone qualities (Type II, Type III, and Type IV) were prepared. A vertical load of 200 N, and a horizontal load of 100 N was… More >

Displaying 131-140 on page 14 of 177. Per Page