Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (88)
  • Open Access

    ARTICLE

    Numerical Simulation of Fretting Fatigue Damage Evolution of Cable Wires Considering Corrosion and Wear Effects

    Ying Wang*, Zheng Yan, Yangyang Wu

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1339-1370, 2023, DOI:10.32604/cmes.2023.025830 - 06 February 2023

    Abstract In this paper, a numerical model of fretting fatigue analysis of cable wire and the fretting fatigue damage constitutive model considering the multi-axis effect were established, and the user material subroutine UMAT was written. Then, the constitutive model of wear morphology evolution of cable wire and the constitutive model of pitting evolution considering the mechanical-electrochemical effect were established, respectively. The corresponding subroutines UMESHMOTION_Wear and UMESHMOTION_Wear_Corrosion were written, and the fretting fatigue life was further predicted. The results show that the numerical simulation life obtained by the program in this paper has the same trend as… More > Graphic Abstract

    Numerical Simulation of Fretting Fatigue Damage Evolution of Cable Wires Considering Corrosion and Wear Effects

  • Open Access

    ARTICLE

    Relative-Position Estimation Based on Loosely Coupled UWB–IMU Fusion for Wearable IoT Devices

    A. S. M. Sharifuzzaman Sagar1, Taein Kim1, Soyoung Park1, Hee Seh Lee2, Hyung Seok Kim1,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1941-1961, 2023, DOI:10.32604/cmc.2023.035360 - 06 February 2023

    Abstract Relative positioning is one of the important techniques in collaborative robotics, autonomous vehicles, and virtual/augmented reality (VR/AR) applications. Recently, ultra-wideband (UWB) has been utilized to calculate relative position as it does not require a line of sight compared to a camera to calculate the range between two objects with centimeter-level accuracy. However, the single UWB range measurement cannot provide the relative position and attitude of any device in three dimensions (3D) because of lacking bearing information. In this paper, we have proposed a UWB-IMU fusion-based relative position system to provide accurate relative position and attitude… More >

  • Open Access

    ARTICLE

    Automatic Recognition of Construction Worker Activities Using Deep Learning Approaches and Wearable Inertial Sensors

    Sakorn Mekruksavanich1, Anuchit Jitpattanakul2,*

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2111-2128, 2023, DOI:10.32604/iasc.2023.033542 - 05 January 2023

    Abstract The automated evaluation and analysis of employee behavior in an Industry 4.0-compliant manufacturing firm are vital for the rapid and accurate diagnosis of work performance, particularly during the training of a new worker. Various techniques for identifying and detecting worker performance in industrial applications are based on computer vision techniques. Despite widespread computer vision-based approaches, it is challenging to develop technologies that assist the automated monitoring of worker actions at external working sites where camera deployment is problematic. Through the use of wearable inertial sensors, we propose a deep learning method for automatically recognizing the… More >

  • Open Access

    ARTICLE

    Efficient Gait Analysis Using Deep Learning Techniques

    K. M. Monica, R. Parvathi*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6229-6249, 2023, DOI:10.32604/cmc.2023.032273 - 28 December 2022

    Abstract Human Activity Recognition (HAR) has always been a difficult task to tackle. It is mainly used in security surveillance, human-computer interaction, and health care as an assistive or diagnostic technology in combination with other technologies such as the Internet of Things (IoT). Human Activity Recognition data can be recorded with the help of sensors, images, or smartphones. Recognizing daily routine-based human activities such as walking, standing, sitting, etc., could be a difficult statistical task to classify into categories and hence 2-dimensional Convolutional Neural Network (2D CNN) MODEL, Long Short Term Memory (LSTM) Model, Bidirectional long… More >

  • Open Access

    ARTICLE

    Tensile Properties and Wear Resistance of Mg Alloy Containing High Si as Implant Materials

    Mengqi Cong*, Yang Zhang, Yunlong Zhang, Xiao Liu, Yalin Lu, Xiaoping Li

    Journal of Renewable Materials, Vol.11, No.4, pp. 1977-1989, 2023, DOI:10.32604/jrm.2023.023849 - 01 December 2022

    Abstract Magnesium alloy has been considered as one of the third-generation biomaterials for the regeneration and support of functional bone tissue. As a regeneration implant material with great potential applications, in-situ Mg2Si phase reinforced Mg-6Zn cast alloy was comprehensively studied and expected to possess excellent mechanical properties via the refining and modifying of Mg2Si reinforcements. The present study demonstrates that the primary and eutectic Mg2Si phase can be greatly modified by the yttrium (Y) addition. The size of the primary Mg2Si phases can be reduced to ~20 μm with an addition of 0.5 wt.% Y. This phenomenon is… More > Graphic Abstract

    Tensile Properties and Wear Resistance of Mg Alloy Containing High Si as Implant Materials

  • Open Access

    ARTICLE

    Analysis of a Cashew Shell and Fly Ash Rich Brake Liner Composite Material

    R. Selvam1,*, L. Ganesh Babu2, Joji Thomas3, R. Prakash1, T. Karthikeyan1, T. Maridurai4

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 569-577, 2023, DOI:10.32604/fdmp.2022.022187 - 29 September 2022

    Abstract Hybrid materials collected from organic and inorganic sources, which are traditionally used as brake lining materials, generally include fly ash, cashew shell powder, phenolic resins, aluminium wool, barites, lime powder, carbon powder and copper powder. The present research focuses on the specific effects produced by fly ash and aims to provide useful indications for the replacement of asbestos due to the health hazards caused by the related fibers. Furthermore, the financial implications related to the use of large-volume use of fly ash, lime stone and cashew shell powder, readily available in most countries in the More > Graphic Abstract

    Analysis of a Cashew Shell and Fly Ash Rich Brake Liner Composite Material

  • Open Access

    ARTICLE

    Textile UWB 5G Antenna for Human Blood Clot Measurement

    K. Sugapriya*, S. Omkumar

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 803-818, 2023, DOI:10.32604/iasc.2023.032163 - 29 September 2022

    Abstract The antenna plays an essential role in the medical industry. The short-range 5th Generation (5G) communication can be used for seamless transmission, reception, patient monitoring, sensing and measuring various processes at high speeds. A passive Ultra Wide Band (UWB) antenna, used as a sensor in the measurement of Prothrombin Time (PT) i.e., blood clot is being proposed. The investigated micro-strip patch UWB antenna operating in the frequency range of 3.1 to 10.6 GHz consists of a circular patch with a diamond-shaped slot made of jeans substrate material with good sensing properties is accomplished by adjusting the… More >

  • Open Access

    ARTICLE

    Feature Fusion-Based Deep Learning Network to Recognize Table Tennis Actions

    Chih-Ta Yen1,*, Tz-Yun Chen2, Un-Hung Chen3, Guo-Chang Wang3, Zong-Xian Chen3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 83-99, 2023, DOI:10.32604/cmc.2023.032739 - 22 September 2022

    Abstract A system for classifying four basic table tennis strokes using wearable devices and deep learning networks is proposed in this study. The wearable device consisted of a six-axis sensor, Raspberry Pi 3, and a power bank. Multiple kernel sizes were used in convolutional neural network (CNN) to evaluate their performance for extracting features. Moreover, a multiscale CNN with two kernel sizes was used to perform feature fusion at different scales in a concatenated manner. The CNN achieved recognition of the four table tennis strokes. Experimental data were obtained from 20 research participants who wore sensors More >

  • Open Access

    ARTICLE

    Numerical Analysis of the Erosion Mechanism inside the Tube Sockets of Main Steam Thermometers in a Coal-Fired Power Plant

    Yukun Lv1, Fan Yang1,*, Zi’an Wei1, Quan Lu2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.2, pp. 379-397, 2023, DOI:10.32604/fdmp.2022.020373 - 29 August 2022

    Abstract Leakage occurring in the tube sockets of the main steam thermometers can seriously threaten the safe operation of coal-fired power plants. Here, assuming a 300 MW unit as a relevant testbed, this problem is investigated numerically through solution of the equations of fluid-dynamics in synergy with the mathematical treatment of relevant statistics. The results indicate that the steam can form a large-scale spiral flow inside the tube socket and continuously scour the inner wall. In the model with the protective casing setting angle of 60°, the average tangential fluid velocity can reach up to 4.8 m/s,… More > Graphic Abstract

    Numerical Analysis of the Erosion Mechanism inside the Tube Sockets of Main Steam Thermometers in a Coal-Fired Power Plant

  • Open Access

    ARTICLE

    Design and Development of Low-cost Wearable Electroencephalograms (EEG) Headset

    Riaz Muhammad1, Ahmed Ali1, M. Abid Anwar1, Toufique Ahmed Soomro2,*, Omar AlShorman3, Adel Alshahrani4, Mahmoud Masadeh5, Ghulam Md Ashraf6,7, Naif H. Ali8, Muhammad Irfan9, Athanasios Alexiou10

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 2821-2835, 2023, DOI:10.32604/iasc.2023.026279 - 17 August 2022

    Abstract Electroencephalogram (EEG) is a method of capturing the electrophysiological signal of the brain. An EEG headset is a wearable device that records electrophysiological data from the brain. This paper presents the design and fabrication of a customized low-cost Electroencephalogram (EEG) headset based on the open-source OpenBCI Ultracortex Mark IV system. The electrode placement locations are modified under a 10–20 standard system. The fabricated headset is then compared to commercially available headsets based on the following parameters: affordability, accessibility, noise, signal quality, and cost. First, the data is recorded from 20 subjects who used the EEG… More >

Displaying 31-40 on page 4 of 88. Per Page