Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (29)
  • Open Access

    ARTICLE

    Deep Transfer Learning Driven Automated Fall Detection for Quality of Living of Disabled Persons

    Nabil Almalki1,2, Mrim M. Alnfiai1,3, Fahd N. Al-Wesabi4, Mesfer Alduhayyem5, Anwer Mustafa Hilal6,*, Manar Ahmed Hamza6

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6719-6736, 2023, DOI:10.32604/cmc.2023.034417

    Abstract Mobile communication and the Internet of Things (IoT) technologies have recently been established to collect data from human beings and the environment. The data collected can be leveraged to provide intelligent services through different applications. It is an extreme challenge to monitor disabled people from remote locations. It is because day-to-day events like falls heavily result in accidents. For a person with disabilities, a fall event is an important cause of mortality and post-traumatic complications. Therefore, detecting the fall events of disabled persons in smart homes at early stages is essential to provide the necessary support and increase their survival… More >

  • Open Access

    ARTICLE

    An Efficient Hybrid Optimization for Skin Cancer Detection Using PNN Classifier

    J. Jaculin Femil1,*, T. Jaya2

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2919-2934, 2023, DOI:10.32604/csse.2023.032935

    Abstract The necessity of on-time cancer detection is extremely high in the recent days as it becomes a threat to human life. The skin cancer is considered as one of the dangerous diseases among other types of cancer since it causes severe health impacts on human beings and hence it is highly mandatory to detect the skin cancer in the early stage for providing adequate treatment. Therefore, an effective image processing approach is employed in this present study for the accurate detection of skin cancer. Initially, the dermoscopy images of skin lesions are retrieved and processed by eliminating the noises with… More >

  • Open Access

    ARTICLE

    Voting Classifier and Metaheuristic Optimization for Network Intrusion Detection

    Doaa Sami Khafaga1, Faten Khalid Karim1,*, Abdelaziz A. Abdelhamid2,3, El-Sayed M. El-kenawy4, Hend K. Alkahtani1, Nima Khodadadi5, Mohammed Hadwan6, Abdelhameed Ibrahim7

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3183-3198, 2023, DOI:10.32604/cmc.2023.033513

    Abstract Managing physical objects in the network’s periphery is made possible by the Internet of Things (IoT), revolutionizing human life. Open attacks and unauthorized access are possible with these IoT devices, which exchange data to enable remote access. These attacks are often detected using intrusion detection methodologies, although these systems’ effectiveness and accuracy are subpar. This paper proposes a new voting classifier composed of an ensemble of machine learning models trained and optimized using metaheuristic optimization. The employed metaheuristic optimizer is a new version of the whale optimization algorithm (WOA), which is guided by the dipper throated optimizer (DTO) to improve… More >

  • Open Access

    ARTICLE

    AWK-TIS: An Improved AK-IS Based on Whale Optimization Algorithm and Truncated Importance Sampling for Reliability Analysis

    Qiang Qin1,2,*, Xiaolei Cao1, Shengpeng Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1457-1480, 2023, DOI:10.32604/cmes.2023.022078

    Abstract In this work, an improved active kriging method based on the AK-IS and truncated importance sampling (TIS) method is proposed to efficiently evaluate structural reliability. The novel method called AWK-TIS is inspired by AK-IS and RBF-GA previously published in the literature. The innovation of the AWK-TIS is that TIS is adopted to lessen the sample pool size significantly, and the whale optimization algorithm (WOA) is employed to acquire the optimal Kriging model and the most probable point (MPP). To verify the performance of the AWK-TIS method for structural reliability, four numerical cases which are utilized as benchmarks in literature and… More >

  • Open Access

    ARTICLE

    Mango Pest Detection Using Entropy-ELM with Whale Optimization Algorithm

    U. Muthaiah1,*, S. Chitra2

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3447-3458, 2023, DOI:10.32604/iasc.2023.028869

    Abstract Image processing, agricultural production, and field monitoring are essential studies in the research field. Plant diseases have an impact on agricultural production and quality. Agricultural disease detection at a preliminary phase reduces economic losses and improves the quality of crops. Manually identifying the agricultural pests is usually evident in plants; also, it takes more time and is an expensive technique. A drone system has been developed to gather photographs over enormous regions such as farm areas and plantations. An atmosphere generates vast amounts of data as it is monitored closely; the evaluation of this big data would increase the production… More >

  • Open Access

    ARTICLE

    Optimization of Adaptive Fuzzy Controller for Maximum Power Point Tracking Using Whale Algorithm

    Mehrdad Ahmadi Kamarposhti1,*, Hassan Shokouhandeh2, Ilhami Colak3, Kei Eguchi4

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5041-5061, 2022, DOI:10.32604/cmc.2022.031583

    Abstract The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point detector. The capability of online fuzzy tracking systems is maximum power, resistance to radiation and temperature changes, and no need for external sensors to measure radiation intensity and temperature. However, the most important issue is the constant changes in the amount of sunlight that cause the maximum power point to be constantly changing. The controller used in the maximum power point tracking (MPPT) circuit must be… More >

  • Open Access

    ARTICLE

    WOA-DNN for Intelligent Intrusion Detection and Classification in MANET Services

    C. Edwin Singh1,*, S. Maria Celestin Vigila2

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1737-1751, 2023, DOI:10.32604/iasc.2023.028022

    Abstract Mobile ad-hoc networks (MANET) are garnering a lot of attention because of their potential to provide low-cost solutions to real-world communications. MANETs are more vulnerable to security threats. Changes in nodes, bandwidth limits, and centralized control and management are some of the characteristics. IDS (Intrusion Detection System) are the aid for detection, determination, and identification of illegal system activity such as use, copying, modification, and destruction of data. To address the identified issues, academics have begun to concentrate on building IDS-based machine learning algorithms. Deep learning is a type of machine learning that can produce exceptional outcomes. This study proposes… More >

  • Open Access

    ARTICLE

    Optimization Ensemble Weights Model for Wind Forecasting System

    Amel Ali Alhussan1, El-Sayed M. El-kenawy2,3, Hussah Nasser AlEisa1,*, M. El-SAID4,5, Sayed A. Ward6,7, Doaa Sami Khafaga1

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2619-2635, 2022, DOI:10.32604/cmc.2022.030445

    Abstract Effective technology for wind direction forecasting can be realized using the recent advances in machine learning. Consequently, the stability and safety of power systems are expected to be significantly improved. However, the unstable and unpredictable qualities of the wind predict the wind direction a challenging problem. This paper proposes a practical forecasting approach based on the weighted ensemble of machine learning models. This weighted ensemble is optimized using a whale optimization algorithm guided by particle swarm optimization (PSO-Guided WOA). The proposed optimized weighted ensemble predicts the wind direction given a set of input features. The conducted experiments employed the wind… More >

  • Open Access

    ARTICLE

    Hybrid Convolutional Neural Network and Long Short-Term Memory Approach for Facial Expression Recognition

    M. N. Kavitha1,*, A. RajivKannan2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 689-704, 2023, DOI:10.32604/iasc.2023.025437

    Abstract Facial Expression Recognition (FER) has been an important field of research for several decades. Extraction of emotional characteristics is crucial to FERs, but is complex to process as they have significant intra-class variances. Facial characteristics have not been completely explored in static pictures. Previous studies used Convolution Neural Networks (CNNs) based on transfer learning and hyperparameter optimizations for static facial emotional recognitions. Particle Swarm Optimizations (PSOs) have also been used for tuning hyperparameters. However, these methods achieve about 92 percent in terms of accuracy. The existing algorithms have issues with FER accuracy and precision. Hence, the overall FER performance is… More >

  • Open Access

    ARTICLE

    Improved Prediction of Metamaterial Antenna Bandwidth Using Adaptive Optimization of LSTM

    Doaa Sami Khafaga1, Amel Ali Alhussan1,*, El-Sayed M. El-kenawy2,3, Abdelhameed Ibrahim4, Said H. Abd Elkhalik3, Shady Y. El-Mashad5, Abdelaziz A. Abdelhamid6,7

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 865-881, 2022, DOI:10.32604/cmc.2022.028550

    Abstract The design of an antenna requires a careful selection of its parameters to retain the desired performance. However, this task is time-consuming when the traditional approaches are employed, which represents a significant challenge. On the other hand, machine learning presents an effective solution to this challenge through a set of regression models that can robustly assist antenna designers to find out the best set of design parameters to achieve the intended performance. In this paper, we propose a novel approach for accurately predicting the bandwidth of metamaterial antenna. The proposed approach is based on employing the recently emerged guided whale… More >

Displaying 11-20 on page 2 of 29. Per Page