Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (237)
  • Open Access

    ARTICLE

    Involvement of the ABA- and H2O2-Mediated Ascorbate–Glutathione Cycle in the Drought Stress Responses of Wheat Roots

    Mengyuan Li1, Zhongye Gao1,2, Lina Jiang1, Leishan Chen1,2,*, Jianhui Ma1,*

    Phyton-International Journal of Experimental Botany, Vol., , DOI:10.32604/phyton.2024.046976

    Abstract Abscisic acid (ABA), hydrogen peroxide (H2O2) and ascorbate (AsA)–glutathione (GSH) cycle are widely known for their participation in various stresses. However, the relationship between ABA and H2O2 levels and the AsA–GSH cycle under drought stress in wheat has not been studied. In this study, a hydroponic experiment was conducted in wheat seedlings subjected to 15% polyethylene glycol (PEG) 6000–induced dehydration. Drought stress caused the rapid accumulation of endogenous ABA and H2O2 and significantly decreased the number of root tips compared with the control. The application of ABA significantly increased the number of root tips, whereas the application of H2O2 markedly… More >

  • Open Access

    ARTICLE

    Physiological and Transcriptome Analysis Illuminates the Molecular Mechanisms of the Drought Resistance Improved by Alginate Oligosaccharides in Triticum aestivum L.

    Yunhong Zhang1,2,*, Yonghui Yang1,2, Jiawei Mao1,2

    Phyton-International Journal of Experimental Botany, Vol., , DOI:10.32604/phyton.2023.046811

    Abstract Alginate oligosaccharides (AOS) enhance drought resistance in wheat (Triticum aestivum L.), but the definite mechanisms remain largely unknown. The physiological and transcriptome responses of wheat seedlings treated with AOS were analyzed under drought stress simulated with polyethylene glycol-6000. The results showed that AOS promoted the growth of wheat seedlings and reduced oxidative damage by improving peroxidase and superoxide dismutase activities under drought stress. A total of 10,064 and 15,208 differentially expressed unigenes (DEGs) obtained from the AOS treatment and control samples at 24 and 72 h after dehydration, respectively, were mainly enriched in the biosynthesis of secondary metabolites (phenylpropanoid biosynthesis,… More >

  • Open Access

    ARTICLE

    Transcriptome-Wide Identification and Functional Analysis of PgSQE08-01 Gene in Ginsenoside Biosynthesis in Panax ginseng C. A. Mey.

    Lei Zhu1,#, Lihe Hou1,3,#, Yu Zhang1, Yang Jiang1, Yi Wang1,2, Meiping Zhang1,2, Mingzhu Zhao1,2,*, Kangyu Wang1,2,*

    Phyton-International Journal of Experimental Botany, Vol., , DOI:10.32604/phyton.2024.047938

    Abstract Panax ginseng C. A. Mey. is an important plant species used in traditional Chinese medicine, whose primary active ingredient is a ginsenoside. Ginsenoside biosynthesis is not only regulated by transcription factors but also controlled by a variety of structural genes. Nonetheless, the molecular mechanism underlying ginsenoside biosynthesis has always been a topic in the discussion of ginseng secondary metabolites. Squalene epoxidase (SQE) is a key enzyme in the mevalonic acid pathway, which affects the biosynthesis of secondary metabolites such as terpenoid. Using ginseng transcriptome, expression, and ginsenoside content databases, this study employed bioinformatic methods to systematically analyze the genes encoding… More >

  • Open Access

    ARTICLE

    Differential Expression of Genes Related to Fruit Development and Capsaicinoids Synthesis in Habanero Pepper Plants Grown in Contrasting Soil Types

    Eduardo Burgos-Valencia1,#, Federico García-Laynes1,#, Ileana Echevarría-Machado1, Fatima Medina-Lara1, Miriam Monforte-González1, José Narváez-Zapata2,*, Manuel Martínez-Estévez1,*

    Phyton-International Journal of Experimental Botany, Vol., , DOI:10.32604/phyton.2023.046943

    Abstract Habanero pepper (Capsicum chinense Jacq.) is a crop of economic relevance in the Peninsula of Yucatan. Its fruits have a high level of capsaicinoids compared to peppers grown in other regions of the world, which gives them industrial importance. Soil is an important factor that affects pepper development, nutritional quality, and capsaicinoid content. However, the effect of soil type on fruit development and capsaicinoid metabolism has been little understood. This work aimed to compare the effect of soils with contrasting characteristics, black soil (BS) and red soil (RS), on the expression of genes related to the development of fruits, and… More >

  • Open Access

    ARTICLE

    Response Mechanisms to Flooding Stress in Mulberry Revealed by Multi-Omics Analysis

    Jingtao Hu1, Wenjing Chen1, Yanyan Duan1, Yingjing Ru1, Wenqing Cao1, Pingwei Xiang2, Chengzhi Huang2, Li Zhang2, Jingsheng Chen1, Liping Gan1,*

    Phyton-International Journal of Experimental Botany, Vol., , DOI:10.32604/phyton.2024.046521

    Abstract Abiotic stress, including flooding, seriously affects the normal growth and development of plants. Mulberry (Morus alba), a species known for its flood resistance, is cultivated worldwide for economic purposes. The transcriptomic analysis has identified numerous differentially expressed genes (DEGs) involved in submergence tolerance in mulberry plants. However, a comprehensive analyses of metabolite types and changes under flooding stress in mulberry remain unreported. A non-targeted metabolomic analysis utilizing liquid chromatography-tandem mass spectrometry (LC-MS/MS) was conducted to further investigate the effects of flooding stress on mulberry. A total of 1,169 metabolites were identified, with 331 differentially accumulated metabolites (DAMs) exhibiting up-regulation in… More >

  • Open Access

    ARTICLE

    A New Micropropagation Technology of Tilia amurensis: In Vitro Micropropagation of Mature Zygotic Embryos and the Establishment of a Plant Regeneration System

    Shijie Lin1, Zimo Wang1, Hongbo Zhu2, Conghui Wang3, Hongfeng Wang2, Dawei Zhang1, Tianbing Gou1, Guangdao Bao1, Ye Luo1, Huaijiang He1, Zhonghui Zhang1,*

    Phyton-International Journal of Experimental Botany, Vol., , DOI:10.32604/phyton.2024.046989

    Abstract Tilia amurensis is an economically valuable broadleaf tree species in Northeast China. The production of high-quality T. amurensis varieties at commercial scales has been greatly limited by the low germination rates. There is thus a pressing need to develop an organogenesis protocol for in vitro propagation of T. amurensis to alleviate a shortage of high-quality T. amurensis seedlings. Here, we established a rapid in vitro propagation system for T. amurensis from mature zygotic embryos and analyzed the effects of plant growth regulators and culture media in different stages. We found that Woody plant medium (WPM) was the optimal primary culture… More >

  • Open Access

    ARTICLE

    Effects of Inoculation with Phosphate Solubilizing Bacteria on the Physiology, Biochemistry, and Expression of Genes Related to the Protective Enzyme System of Fritillaria taipaiensis P. Y. Li

    Zhifen Shi1,3, Fumei Pan1,3, Xiaotian Kong2, Jiaqi Lang3, Mingyan Ye3, Qian Wu4, Guangzhi Wang1,*, Liang Han5,*, Nong Zhou3,*

    Phyton-International Journal of Experimental Botany, Vol., , DOI:10.32604/phyton.2024.046452

    Abstract Fritillaria taipaiensis P. Y. Li is a widely used medicinal herb in treating pulmonary diseases. In recent years, its wild resources have become scarce, and the demand for efficient artificial cultivation has significantly increased. This article is the first to apply phosphate solubilizing bacteria isolated from the rhizosphere soil of F. taipaiensis P. Y. Li to the cultivation process of F. taipaiensis P. Y. Li. The aim is to identify suitable reference strains for the artificial cultivation and industrial development of F. taipaiensis P. Y. Li by examining the effects of various phosphate solubilizing bacteria and their combinations on photosynthesis,… More >

  • Open Access

    ARTICLE

    Multi-Scale Mixed Attention Tea Shoot Instance Segmentation Model

    Dongmei Chen1, Peipei Cao1, Lijie Yan1, Huidong Chen1, Jia Lin1, Xin Li2, Lin Yuan3, Kaihua Wu1,*

    Phyton-International Journal of Experimental Botany, Vol., , DOI:10.32604/phyton.2024.046331

    Abstract Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea. Traditional tea-picking machines may compromise the quality of the tea leaves. High-quality teas are often handpicked and need more delicate operations in intelligent picking machines. Compared with traditional image processing techniques, deep learning models have stronger feature extraction capabilities, and better generalization and are more suitable for practical tea shoot harvesting. However, current research mostly focuses on shoot detection and cannot directly accomplish end-to-end shoot segmentation tasks. We propose a tea shoot instance segmentation model based on multi-scale mixed attention… More >

  • Open Access

    ARTICLE

    Ellagic Acid Enhances Antioxidant System Activity and Maintains the Quality of Strawberry Fruit during Storage

    Jian Chen1, Jing Zhang2, Gang Pan3, Dandan Huang1,*, Shuhua Zhu1

    Phyton-International Journal of Experimental Botany, Vol., , DOI:10.32604/phyton.2023.045621

    Abstract Ellagic acid (EA) is a natural antioxidant, widely present in a lot of forms’ soft fruits, nuts, and other plant tissues, and helpful for promoting human health; however, its protective effect on postharvest fruit and improving the quality index of postharvest fruit have rarely been studied. In this experiment, the strawberries were soaked in 0, 100, 200, 300, 400, and 500 mg L−1 EA, respectively, and the influential EA on fruit quality and the antioxidant system of strawberries were studied. Compared with the control, EA treatment can reduce the browning degree and rotting rate of strawberry fruit during storage and… More >

  • Open Access

    REVIEW

    Carbon Monoxide Modulates Auxin Transport and Nitric Oxide Signaling in Plants under Iron Deficiency Stress

    Kaiyue Hong1,2, Yasmina Radani2, Waqas Ahmad2, Ping Li3, Yuming Luo1,*

    Phyton-International Journal of Experimental Botany, Vol., , DOI:10.32604/phyton.2023.046389

    Abstract Carbon monoxide (CO) and nitric oxide (NO) are signal molecules that enhance plant adaptation to environmental stimuli. Auxin is an essential phytohormone for plant growth and development. CO and NO play crucial roles in modulating the plant’s response to iron deficiency. Iron deficiency leads to an increase in the activity of heme oxygenase (HO) and the subsequent generation of CO. Additionally, it alters the polar subcellular distribution of Pin-Formed 1 (PIN1) proteins, resulting in enhanced auxin transport. This alteration, in turn, leads to an increase in NO accumulation. Furthermore, iron deficiency enhances the activity of ferric chelate reductase (FCR), as… More >

Displaying 11-20 on page 2 of 237. Per Page