Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,722)
  • Open Access

    ARTICLE

    Fracture Analysis for Two-dimensional Plane Problems of Nonhomogeneous Magneto-electro-thermo-elastic Plates Subjected to Thermal Shock by Using the Meshless Local Petrov-Galerkin Method

    W. J. Feng1, X. Han2, Y.S. Li3

    CMES-Computer Modeling in Engineering & Sciences, Vol.48, No.1, pp. 1-26, 2009, DOI:10.3970/cmes.2009.048.001

    Abstract The two-dimensional (2D) fracture problem of nonhomogeneous mag -neto-electro-thermo-elastic materials under dynamically thermal loading is investigated by the meshless local Petrov-Galerkin (MLPG) method. The material parameters are assumed to vary in either the height or width direction of the plates. The Laplace-transform technique is utilized to solve the time-dependent problems. In this MLPG analysis, the moving least squares (MLS) method is adopted to approximate the physical quantities, and the Heaviside step function is taken as a test function. The validity and efficiency of the MLPG method are firstly examined. The crack problem of a nonhomogeneous magneto-electro-thermo-elastic plate is then considered.… More >

  • Open Access

    ARTICLE

    In virtuo Experiments Based on the Multi-Interaction System Framework: the RéISCOP Meta-Model.

    G. Desmeulles, S. Bonneaud, P. Redou>, V. Rodin, J. Tisseau

    CMES-Computer Modeling in Engineering & Sciences, Vol.47, No.3, pp. 299-330, 2009, DOI:10.3970/cmes.2009.047.299

    Abstract Virtual reality can enable computer scientists and domain experts to perform in virtuo experiments of numerical models of complex systems. Such dynamical and interactive experiments are indeed needed when it comes to complex systems with complex dynamics and structures. In this context, the question of the modeling tool to study such models is crucial. Such tool, called a virtuoscope, must enable the virtual experimentation of models inside a conceptual and experimental framework for imagining, modeling and experimenting the complexity of the studied systems. This article describes a conceptual framework and a meta model, called RéISCOP, that enable the construction and… More >

  • Open Access

    ARTICLE

    Analytical Exact Solutions of Heat Conduction Problems for a Three-Phase Elliptical Composite

    Ching Kong Chao1,2, Chin Kun Chen1, Fu Mo Chen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.47, No.3, pp. 283-298, 2009, DOI:10.3970/cmes.2009.047.283

    Abstract Analytical exact solutions of a fundamental heat conduction problem for a three-phase elliptical composite under a remote uniform heat flow are provided in this paper. The steady-state temperature and heat flux fields in each phase of an elliptical composite are analyzed in detail. Investigations on the present heat conduction problem are tedious due to the presence of material inhomogeneities and geometric discontinuities. Based on the technique of conformal mapping and the method of analytical continuation in conjunction with the alternating technique, the general expressions of the temperature and heat flux are derived explicitly in a closed form. Some numerical results… More >

  • Open Access

    ARTICLE

    Modeling of Particle Debonding and Void Evolution in Particulated Ductile Composites

    B.R.Kim1 and H.K.Lee1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.47, No.3, pp. 253-282, 2009, DOI:10.3970/cmes.2009.047.253

    Abstract Damage characteristic of particulated ductile composites is a complex evolutionary phenomenon that includes particle debonding and void evolution with the accumulation of the plastic straining of the ductile matrix. In this paper, a micromechanical elastoplastic damage model for ductile matrix composites considering gradually incremental damage (particle debonding and void evolution) is proposed to predict the overall elastoplastic behavior and damage evolution in the composites. The constitutive damage model proposed in an earlier work by the authors [Kim and Lee (2009)] considering particle debonding is extended to accommodate the gradually incremental damage and elastoplastic behavior of the composites. On the basis… More >

  • Open Access

    ARTICLE

    Computational Framework for Durability Design and Assessment of Reinforced Concrete Structures Exposed to Chloride Environment

    Gang Lin1, Yinghua Liu1,2, Zhihai Xiang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.47, No.3, pp. 217-252, 2009, DOI:10.3970/cmes.2009.047.217

    Abstract Deterioration of reinforced concrete (RC) structures due to chloride ingress followed by reinforcement corrosion is a serious problem all over the world, therefore prediction of chloride profiles is a key element in evaluating durability and integrity of RC structures exposed to chloride environment. In the present paper, an integrated finite element-based computational framework is developed for predicting service life of RC structures exposed to chloride environment, which takes environment temperature and humidity fluctuations, diffusion and convection, chloride binding, as well as the decay of durability of structures caused by coupled deterioration processes into account. The decay of RC structures due… More >

  • Open Access

    ARTICLE

    Solution of Phase Change Problems by Collocation with Local Pressure Correction

    G. Kosec1, B. Šarler2

    CMES-Computer Modeling in Engineering & Sciences, Vol.47, No.2, pp. 191-216, 2009, DOI:10.3970/cmes.2009.047.191

    Abstract This paper explores an application of a novel mesh-free Local Radial Basis Function Collocation Method (LRBFCM) [Sarler and Vertnik (2006)] in solution of coupled heat transfer and fluid flow problems with solid-liquid phase change. The melting/freezing of a pure substance is solved in primitive variables on a fixed grid with convection suppression, proportional to the amount of the solid fraction. The involved temperature, velocity and pressure fields are represented on overlapping sub-domains through collocation by using multiquadrics Radial Basis Functions (RBF). The involved first and second derivatives of the fields are calculated from the respective derivatives of the RBF's. The… More >

  • Open Access

    ARTICLE

    A Novel Method for Solving the Cauchy Problem of Laplace Equation Using the Fictitious Time Integration Method

    Chih-Chang Chi1, Weichung Yeih1,2, Chein-Shan Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.47, No.2, pp. 167-190, 2009, DOI:10.3970/cmes.2009.047.167

    Abstract In this study, a novel method for solving the Cauchy problem of Laplace equation is developed. Through the fictitious time integration method (FTIM), the finding of the root of the resulting linear equations can be transformed into for finding the fixed point of a system of first order ordinary differential equations, in which a fictitious time variable is introduced. In such a sense, the inverse of ill-posed leading matrix is not necessary for the FTIM. This method uses the residual of each equation to control the evolution of unknowns in the fictitious time, and it is different from the conventional… More >

  • Open Access

    ARTICLE

    An Efficient Response Surface Based Optimisation Method for Non-Deterministic Harmonic and Transient Dynamic Analysis

    M. De Munck1, D. Moens2, W. Desmet3, D.Vandepitte3

    CMES-Computer Modeling in Engineering & Sciences, Vol.47, No.2, pp. 119-166, 2009, DOI:10.3970/cmes.2009.047.119

    Abstract Deterministic simulation tools enable a very precise simulation of physical phenomena using numerical models. In many real life situations however, a deterministic analysis is not sufficient to assess the quality of a design. In a design stage, some physical properties of the model may not be determined yet. But even in a design ready for production, design tolerances and production inaccuracies introduce variability and uncertainty. In these cases, a non-deterministic analysis procedure is required, either using a probabilistic or a non-probabilistic approach. The authors developed an intelligent Kriging response surface based optimisation procedure that can be used in combination with… More >

  • Open Access

    ARTICLE

    Preconditioned Conjugate Gradient Method Enhanced by Deflation of Rigid Body Modes Applied to Composite Materials

    T.B Jönsthövel1, M.B. van Gijzen2, C.Vuik2, C. Kasbergen1, A. Scarpas1

    CMES-Computer Modeling in Engineering & Sciences, Vol.47, No.2, pp. 97-118, 2009, DOI:10.3970/cmes.2009.047.097

    Abstract The introduction of computed x-ray tomography allows for the construction of high quality, material-per-element based 3D meshes in the field of structural mechanics. The use of these meshes enables a shift from meso to micro scale analysis of composite materials like cement concrete, rocks and asphalt concrete. Unfortunately, because of the extremely long execution time, memory and storage space demands, the majority of commercially available finite element packages are not capable of handling efficiently the most computationally demanding operation of the finite element solution process, that is, the inversion of the structural stiffness matrix. To address this issue, an efficient… More >

  • Open Access

    ARTICLE

    Two- and Three-Dimensional Transient Thermoelastic Analysis by the MLPG Method

    J. Sladek1, V. Sladek1, P. Solek2, C.L. Tan3, Ch. Zhang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.47, No.1, pp. 61-96, 2009, DOI:10.3970/cmes.2009.047.061

    Abstract The meshless local Petrov-Galerkin (MLPG) method for transient linear thermoelastic analysis is presented. Orthotropic material properties are considered here. In uncoupled thermoelasticity, the temperature field is not influenced by displacements. Therefore, in the first step, the heat conduction equation is solved for the temperature distribution in the domain. The equations of motion are then solved with the inertial term considered. A Heaviside step function as the test functions is applied in the weak-form to derive local integral equations for solving two- and three-dimensional problems. Local integral equations are written on small sub-domains with circular or spherical shapes. They surround nodal… More >

Displaying 3181-3190 on page 319 of 3722. Per Page