Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (704)
  • Open Access

    ARTICLE

    Internet of Things Enabled Intelligent Energy Management and Control System for Heavy Equipment Industrial Park and Fuzzy Assessment of Its Schemes

    Jia Zhu*

    Energy Engineering, Vol.118, No.2, pp. 379-397, 2021, DOI:10.32604/EE.2021.014178 - 23 December 2020

    Abstract In order to solve the problems of poor information flow, low energy utilization rate and energy consumption data reuse in the heavy equipment industrial park, the Internet of Things (IoT) technology is applied to construct the intelligent energy management and control system (IEMCS). The application architecture and function module planning are analyzed and designed. Furthermore, the IEMCS scheme is not unique due to the fuzziness of customer demand and the understanding deviation of designer to customer demand in the design stage. Scheme assessment is of great significance for the normal subsequent implementation of the system.… More >

  • Open Access

    ARTICLE

    Analysis of Electromagnetic Performance of Modulated Coaxial Magnetic Gears Used in Semi-Direct Drive Wind Turbines

    Jungang Wang1,*, Liqun Qian1, Shuairui Xu1, Ruina Mo2

    Energy Engineering, Vol.118, No.2, pp. 251-264, 2021, DOI:10.32604/EE.2021.014143 - 23 December 2020

    Abstract Wind turbine is a key device to realize the utilization of wind energy, and it has been highly valued by all countries. But the mechanical gear transmission of the existing wind power device has the disadvantages of high vibration and noise, high failure rate, and short service time. Magnetic field modulation electromagnetic gear transmission is a new non-contact transmission method. However, the conventional modulation magnetic gear has low torque density and torque defects with large fluctuations. In order to overcome the gear transmission problems of the existing semi-direct drive wind power generation machinery and improve… More >

  • Open Access

    ARTICLE

    Demand Responsive Market Decision-Makings and Electricity Pricing Scheme Design in Low-Carbon Energy System Environment

    Hongming Yang1,*, Qian Yu1, Xiao Huang1, Ben Niu2, Min Qi3

    Energy Engineering, Vol.118, No.2, pp. 285-301, 2021, DOI:10.32604/EE.2021.013734 - 23 December 2020

    Abstract The two-way interaction between smart grid and customers will continuously play an important role in enhancing the overall efficiency of the green and low-carbon electric power industry and properly accommodating intermittent renewable energy resources. Thus far, the existing electricity pricing mechanisms hardly match the technical properties of smart grid; neither can they facilitate increasing end users participating in the electricity market. In this paper, several relevant models and novel methods are proposed for pricing scheme design as well as to achieve optimal decision-makings for market participants, in which the mechanisms behind are compatible with demand… More >

  • Open Access

    ARTICLE

    An Advanced Approach for Improving the Prediction Accuracy of Natural Gas Price

    Quanjia Zuo1, Fanyi Meng1,*, Yang Bai2

    Energy Engineering, Vol.118, No.2, pp. 303-322, 2021, DOI:10.32604/EE.2021.013239 - 23 December 2020

    Abstract As one of the most important commodity futures, the price forecasting of natural gas futures is of great significance for hedging and risk aversion. This paper mainly focuses on natural gas futures pricing which considers seasonality fluctuations. In order to study this issue, we propose a modified approach called six-factor model, in which the influence of seasonal fluctuations are eliminated in every random factor. Using Monte Carlo method, we first assess and comparative analyze the fitting ability of three-factor model and six-factor model for the out of sample data. It is found that six-factor model More >

  • Open Access

    ARTICLE

    Development of Environmentally Friendly and Energy Efficient Refrigerants for Refrigeration Systems

    Piyanut Saengsikhiao1, Juntakan Taweekun1,2,*, Kittinan Maliwan2, Somchai Sae-ung2, Thanansak Theppaya2

    Energy Engineering, Vol.118, No.2, pp. 411-433, 2021, DOI:10.32604/EE.2021.012860 - 23 December 2020

    Abstract This paper presents the improvement of eco-friendly and power consumption saving refrigerants for refrigeration systems. The novel azeotropic refrigerant mixtures of HFCs and HCs can replace refrigeration systems, and using the R134, R32, R125, and R1270 refrigerants in several compositions found using the decision tree function of the RapidMiner software (which came first in the KDnuggets annual software poll). All refrigerant results are mixed of POE, which is A1 classification refrigerant, non-flammable, and innocuous refrigerant, and using REFPROP software and CYCLE_D-HX software are under the CAN/ANSI/AHRI540 standards. The boiling point of the new refrigerant mix… More >

  • Open Access

    ARTICLE

    Parameter Scaling of the Aerodynamic Breakup of the Acoustic Levitated Droplets in an Air Jet Flow

    Yanju Wei1,*, Shengcai Deng1, Jie Zhang1, Yajing Yang2, Hao Chen3

    Energy Engineering, Vol.118, No.2, pp. 225-235, 2021, DOI:10.32604/EE.2021.012416 - 23 December 2020

    Abstract The aerodynamic breakup of the droplet has been intensely studied in this paper. We aim to establish a unified relationship between dimensionless kinematic parameters such as displacement, spreading diameter, Weber number, time, and so on. The breakup characteristics of the acoustic levitated ethanol droplet are experimentally investigated when exposed to an air jet flow. The breakup phenomenons were recorded with a high-speed camera. The breakup characteristics were analyzed, and the physical models of the moving and transforming behaviors were established to explain the breakup mechanisms. We found that the displacement of the windward side of More >

  • Open Access

    ARTICLE

    Analysis of Solar Direct-Driven Organic Rankine Cycle Powered Vapor Compression Cooling System Combined with Electric Motor for Office Building Air-Conditioning

    Xiang Xiao1, Wei Zhao1, Wei Wang1, Wei Zhang1, Xianbiao Bu2, Lingbao Wang2,*, Huashan Li2

    Energy Engineering, Vol.118, No.1, pp. 89-101, 2021, DOI:10.32604/EE.2020.014016 - 17 November 2020

    Abstract Solar energy powered organic Rankine cycle vapor compression cycle (ORC-VCC) is a good alternative to convert solar heat into a cooling effect. In this study, an ORC-VCC system driven by solar energy combined with electric motor is proposed to ensure smooth operation under the conditions that solar radiation is unstable and discontinuous, and an office building located in Guangzhou, China is selected as a case study. The results show that beam solar radiation and generation temperature have considerable effects on the system performance. There is an optimal generation temperature at which the system achieves optimum More >

  • Open Access

    ARTICLE

    Relationship between Industrial Coupling Coordination and Carbon Intensity in the Bohai Rim Economic Circle

    Mei Song1,2,*, Liyan Zhang1, Mingxin Zhang1,*, Dandan Li1, Yaxu Zhu1

    Energy Engineering, Vol.118, No.1, pp. 143-161, 2021, DOI:10.32604/EE.2020.013834 - 17 November 2020

    Abstract Coordinated development of new high-tech industries and traditional industries is crucially important for economic growth and environmental sustainability, and it has become a focus of academic and governmental bodies. This study establishes the comprehensive evaluation index system of high-tech industries and traditional industries, and uses the method of principal component analysis, coupling and coupling coordination degree model to determine the level of industry coordinated development. Then, Pearson correlation test is used to further analyze the correlation between regional industrial coupling coordination and carbon intensity of the seven provinces in the Bohai Rim Economic Circle (BREC).… More >

  • Open Access

    ARTICLE

    Off-Design Performance of Gas Turbine Power Units with Alternative Load-Control Strategies

    Zhiqiang Pan1, Zhiwen Lin1, Kunle Fan2, Cheng Yang2,*, Xiaoqian Ma2

    Energy Engineering, Vol.118, No.1, pp. 119-141, 2021, DOI:10.32604/EE.2020.013585 - 17 November 2020

    Abstract Gas turbine power units, as an effective way to cope with the severe challenge of renewable energy accommodation in power grids, arouse the interest of power enterprises in the deep peak-load regulation performance. Two common alternative load-control strategies including constant turbine inlet temperature (TIT) and constant turbine exhaust temperature (TET) regulations were taken into consideration. To comparatively investigate the part-load performance under these strategies, both mathematical and physical models were set up successively to serve as a validation and complementary to each other. For the mathematical model of compressor with inlet guide vane (IGV), combustor… More >

  • Open Access

    ARTICLE

    Experimental Thermal Performance of Different Capillary Structures for Heat Pipes

    L. Krambeck1, G. A. Bartmeyer1, D. O. Souza2, D. Fusão1, P. H. D. Santos2, T. Antonini Alves1,*

    Energy Engineering, Vol.118, No.1, pp. 1-14, 2021, DOI:10.32604/EE.2020.013572 - 17 November 2020

    Abstract The temperature control in electronic packaging is the key in numerous applications, to avoid overheating and hardware failure. Due to high capability of heat transfer, good temperature uniformity, and no power consumption, heat pipes can be widely used for heat dissipation of electronic components. This paper reports an experimental thermal analysis of different capillary structures for heat pipes. The wicks considered are metal screens, axial microgrooves, and sintered metal powder. The heat pipes are made of copper, a 200 mm length tube and a 9.45 mm external diameter. Working fluid used was distilled water. The… More >

Displaying 651-660 on page 66 of 704. Per Page