Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24,943)
  • Open Access

    ARTICLE

    Natural neighbour Petrov-Galerkin Method for Shape Design Sensitivity Analysis

    Kai Wang1, Shenjie Zhou1,2, Zhifeng Nie1, Shengli Kong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.26, No.2, pp. 107-122, 2008, DOI:10.3970/cmes.2008.026.107

    Abstract The natural neighbour Petrov-Galerkin method (NNPG) is one of the special cases of the generalized meshless local Petrov-Galerkin method (MLPG). This paper demonstrates the NNPG can be successfully used in design sensitivity analysis in 2D elasticity. The design sensitivity analysis method based on the local weak form (DSA-LWF) in the NNPG context is proposed. In the DSA-LWF, the local weak form of governing equation is directly differentiated with respect to design variables and discretized with NNPG to obtain the sensitivities of structural responds. The calculation of derivatives of shape functions with respect to design variables More >

  • Open Access

    ARTICLE

    Atomic-scale Modeling of Self-Positioning Nanostructures

    Y. Nishidate1, G. P. Nikishkov1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.26, No.2, pp. 91-106, 2008, DOI:10.3970/cmes.2008.026.091

    Abstract Atomic-scale finite element procedure for modeling of self-positioning nanostructures is developed. Our variant of the atomic-scale finite element method is based on a meshless approach and on the Tersoff interatomic potential function. The developed algorithm is used for determination of equilibrium configuration of atoms after nanostructure self-positioning. Dependency of the curvature radius of nanostructures on their thickness is investigated. It is found that for thin nanostructures the curvature radius is considerably smaller than predicted by continuum mechanics equations. Curvature radius variation with varying orientation of crystallographic axes is also modeled and results are compared to More >

  • Open Access

    ARTICLE

    On Numerical Modeling of Cyclic Elastoplastic Response of Shell Structures

    Zdenko Tonković1, Jurica Sorić1,2, Ivica Skozrit1

    CMES-Computer Modeling in Engineering & Sciences, Vol.26, No.2, pp. 75-90, 2008, DOI:10.3970/cmes.2008.026.075

    Abstract An efficient numerical algorithm for modeling of cyclic elastoplastic deformation of shell structures is derived. The constitutive model includes highly nonlinear multi-component forms of kinematic and isotropic hardening functions in conjunction with von Mises yield criterion. Therein, the closest point projection algorithm employing the Reissner-Mindlin type kinematic model, completely formulated in tensor notation, is applied. A consistent elastoplastic tangent modulus ensures high convergence rates in the global iteration approach. The integration algorithm has been implemented into a layered assumed strain isoparametric finite shell element, which is capable of geometrical nonlinearities including finite rotations. Numerical examples, More >

  • Open Access

    ARTICLE

    Topology-optimization of Structures Based on the MLPG Mixed Collocation Method

    Shu Li1, S. N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.26, No.1, pp. 61-74, 2008, DOI:10.3970/cmes.2008.026.061

    Abstract The Meshless Local Petrov-Galerkin (MLPG) "mixed collocation'' method is applied to the problem of topology-optimization of elastic structures. In this paper, the topic of compliance minimization of elastic structures is pursued, and nodal design variables which represent nodal volume fractions at discretized nodes are adopted. A so-called nodal sensitivity filter is employed, to prevent the phenomenon of checkerboarding in numerical solutions to the topology-optimization problems. The example results presented in the paper demonstrate the suitability and versatility of the MLPG "mixed collocation'' method, in implementing structural topology-optimization. More >

  • Open Access

    ARTICLE

    A NURBS-based Parametric Method Bridging Mesh-free and Finite Element Formulations

    Amit Shaw1, B. Banerjee1, D Roy1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.26, No.1, pp. 31-60, 2008, DOI:10.3970/cmes.2008.026.031

    Abstract A generalization of a NURBS based parametric mesh-free method (NPMM), recently proposed by Shaw and Roy (2008), is considered. A key feature of this parametric formulation is a geometric map that provides a local bijection between the physical domain and a rectangular parametric domain. This enables constructions of shape functions and their derivatives over the parametric domain whilst satisfying polynomial reproduction and interpolation properties over the (non-rectangular) physical domain. Hence the NPMM enables higher-dimensional B-spline based functional approximations over non-rectangular domains even as the NURBS basis functions are constructed via the usual tensor products of… More >

  • Open Access

    ARTICLE

    Configuration Maintenance of Inflated Membrane Structures Using SMA Film Actuators

    Jin-Ho Roh1, In Lee2

    CMES-Computer Modeling in Engineering & Sciences, Vol.26, No.1, pp. 13-30, 2008, DOI:10.3970/cmes.2008.026.013

    Abstract A methodology to maintain the configuration of inflated membrane structures using shape memory alloy (SMA) film actuator is numerically investigated. The two- dimensional incremental formulation of the SMA constitutive model is developed. New parameters related to the thermodynamic energy equation are introduced to describe more general behaviors of the SMA film. With numerical algorithm of wrinkling and SMAs, the interactions between the inflated membrane structure and the SMA film are investigated by using a finite element program. The effectiveness of SMA film to control the configuration of an inflated membrane structure is examined. To demonstrate More >

  • Open Access

    ARTICLE

    Evaluation of Seismic Design Values in the Taiwan Building Code by Using Artificial Neural Network

    Tienfuan Kerh1,2, J.S. Lai1, D. Gunaratnam2, R. Saunders2

    CMES-Computer Modeling in Engineering & Sciences, Vol.26, No.1, pp. 1-12, 2008, DOI:10.3970/cmes.2008.026.001

    Abstract Taiwan frequently suffers from strong ground motion, and the current building code is essentially based on two seismic zones, A and B. The design value of horizontal acceleration for zone A is 0.33g, and the value for zone B is 0.23g. To check the suitability of these values, a series of actual earthquake records are considered for evaluating peak ground acceleration (PGA) for each of the zones by using neural network models. The input parameters are magnitude, epicenter distance, and focal depth for each of the checking stations, and the peak ground acceleration is calculated… More >

  • Open Access

    ARTICLE

    Local RBF Collocation Method for Darcy Flow

    G. Kosec1, B. Šarler1

    CMES-Computer Modeling in Engineering & Sciences, Vol.25, No.3, pp. 197-208, 2008, DOI:10.3970/cmes.2008.025.197

    Abstract This paper explores the application of the mesh-free Local Radial Basis Function Collocation Method (LRBFCM) in solution of coupled heat transfer and fluid flow problems in Darcy porous media. The involved temperature, velocity and pressure fields are represented on overlapping sub-domains through collocation by using multiquadrics Radial Basis Functions (RBF). The involved first and second derivatives of the fields are calculated from the respective derivatives of the RBF's. The energy and momentum equations are solved through explicit time stepping. The pressure-velocity coupling is calculated iteratively, with pressure correction, predicted from the local continuity equation violation.… More >

  • Open Access

    ARTICLE

    Transient Coupled Thermoelastic Contact Problems Incorporating Thermal Resistance: a BEM Approach

    L.K. Keppas1, G.I. Giannopoulos1, N.K. Anifantis1

    CMES-Computer Modeling in Engineering & Sciences, Vol.25, No.3, pp. 181-196, 2008, DOI:10.3970/cmes.2008.025.181

    Abstract In the present paper a boundary element procedure is formulated to treat two-dimensional time dependent thermo-elastic contact problems incorporating thermal resistance along the contacting surfaces. The existence of pressure-dependent thermal contact leads to coupling of temperature and stress fields. Therefore, the inherent non-linearity of the problem demands simultaneous treating of both thermal and mechanical boundary integral equations while iterative procedures are introduced to ensure equilibrium of mechanical and thermal contact conditions at each step of the process. The transient behavior of interfacial cracks in bimaterial solids when undergo thermal shock in the presence of partial More >

  • Open Access

    ARTICLE

    Slow viscous motion of a solid particle in a spherical cavity

    A. Sellier1

    CMES-Computer Modeling in Engineering & Sciences, Vol.25, No.3, pp. 165-180, 2008, DOI:10.3970/cmes.2008.025.165

    Abstract The slow viscous and either imposed or gravity-driven migration of a solid arbitrarily-shaped particle suspended in a Newtonian liquid bounded by a spherical cavity is calculated using two different boundary element approaches. Each advocated method appeals to a few boundary-integral equations and, by contrast with previous works, also holds for non-spherical particles. The first procedure puts usual free-space Stokeslets on both the cavity and particle surfaces whilst the second one solely spreads specific Stokeslets obtained elsewhere in Oseen (1927) on the particle's boundary. Each approach receives a numerical implementation which is found to be in More >

Displaying 23611-23620 on page 2362 of 24943. Per Page