Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (28,590)
  • Open Access

    ARTICLE

    Numerical Modelling of Electromagnetic Wave Propagation by Meshless Local Petrov-Galerkin Formulations

    Delfim Soares Jr. 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.50, No.2, pp. 97-114, 2009, DOI:10.3970/cmes.2009.050.097

    Abstract In this work, meshless methods based on the local Petrov-Galerkin (MLPG) approach are presented to analyse electromagnetic wave propagation problems. Formulations adopting the Heaviside step function and the Gaussian weight function as the test functions in the local weak form are considered. The moving least square (MLS) method is used to approximate the physical quantities in the local integral equations. After spatial discretization is carried out, a system of ordinary differential equations of second order is obtained. This system is solved in the time-domain by the Houbolt's method, allowing the computation of the so-called primary More >

  • Open Access

    ARTICLE

    Modeling of the Inhibition-Mechanism Triggered by `Smartly' Sensed Interfacial Stress Corrosion and Cracking

    Sudib K. Mishra1, J. K. Paik2, S. N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.50, No.1, pp. 67-96, 2009, DOI:10.3970/cmes.2009.050.067

    Abstract We present a simulation based study, by combining several models involving multiple time scales and physical processes, which govern the interfacial stress corrosion cracking (SCC) in grain boundaries, layered composites or bi-materials, and the mechanisms of inhibition using `smart' agents. The inhibiting agents described herein, automatically sense the initiation of damage, migrate to the sites and delay the corrosion kinetics involved in the process. The phenomenon of SCC is simulated using the lattice spring model (for the mechanical stresses), coupled with a finite difference model of diffusing species, causing the dissolution of the interfacial bonds.… More >

  • Open Access

    ARTICLE

    The Temperature-Quantum-Correction Effect on the MD-Calculated Thermal Conductivity of Silicon Thin Films

    Tai-Ming Chang1, Chien-Chou Weng1, Mei-Jiau Huang1,2, Chun-KaiLiu2, Chih-Kuang Yu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.50, No.1, pp. 47-66, 2009, DOI:10.3970/cmes.2009.050.047

    Abstract We employ the non-equilibrium molecular dynamics (NEMD) simulation to calculate the in-plane thermal conductivity of silicon thin films of thickness 2.2nm and 11nm. To eliminate the finite-size effect, samples of various lengths are simulated and an extrapolation technique is applied. To perform the quantum correction which is necessary as the MD simulation temperature is lower than Debye temperature, the confined phonon spectra are obtained in advance via the EMD simulations. The investigation shows the thermal conductivities corrected based on the bulk and thin-film phonon densities of states are very close and they agree excellently with More >

  • Open Access

    ARTICLE

    A New Time Domain Boundary Integral Equation and Efficient Time Domain Boundary Element Scheme of Elastodynamics

    Z.H.Yao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.50, No.1, pp. 21-46, 2009, DOI:10.3970/cmes.2009.050.021

    Abstract The traditional time domain boundary integral equation (TDBIE) of elastodynamics is formulated based on the time dependent fundamental solution and the reciprocal theorem of elastodynamics. The time dependent fundamental solution of the elastodynamics is the response of the infinite elastic medium under a unit concentrate impulsive force subjected at a point and at an instant, including not only the pressure wave and shear wave, but also the Laplace wave with speed between that of P and S waves. In this paper, a new TDBIE is derived directly from the initial boundary value problem of the… More >

  • Open Access

    ARTICLE

    Analysis of 2D Thin Walled Structures in BEM with High-Order Geometry Elements Using Exact Integration

    Yaoming Zhang1, Yan Gu1, Jeng-Tzong Chen2

    CMES-Computer Modeling in Engineering & Sciences, Vol.50, No.1, pp. 1-20, 2009, DOI:10.3970/cmes.2009.050.001

    Abstract There exist nearly singular integrals for thin walled structures in the boundary element method (BEM). In this paper, an efficient analytical method is developed to deal with the nearly singular integrals in the boundary integral equations (BIEs) for 2-D thin walled structures. The developed method is possible for problems defined in high-order geometry elements when the nearly singular integrals need to be calculated. For the analysis of nearly singular integrals with high-order geometry elements, much fewer boundary elements can be used to achieve higher accuracy. More importantly, computational models of thin walled structures or thin More >

  • Open Access

    ARTICLE

    Optimal Plastic Synthesis of Structures with Unilateral Supports Involving Frictional Contact

    S. Tangaramvong, F. Tin-Loi

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.3, pp. 269-296, 2009, DOI:10.3970/cmes.2009.049.269

    Abstract We consider the optimal synthesis, namely minimum weight design, of rigid perfectly-plastic structures for which some supports involve unilateral frictional contact. This problem is of interest as it is not only encountered in practice but it also involves, in the general friction case, a nonassociative complementarity condition that makes it theoretically and numerically challenging. For simplicity of exposition, we focus on the class of bar structures for which yielding is governed by either pure bending or by combined axial and flexural forces. In view of possible multiplicity of solutions due to nonassociativity, a direct optimization More >

  • Open Access

    ARTICLE

    Dynamical Analysis of a Fractional-order HIV Model

    Haiping Ye1, Yongsheng Ding2

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.3, pp. 255-268, 2009, DOI:10.3970/cmes.2009.049.255

    Abstract A fractional-order model for the immunological and therapeutic control of HIV is studied qualitatively. The equilibria are found and their local stability are investigated. Also the global stability of the infection-free equilibrium is established. The optimal efficacy level of anti-retroviral therapy needed to eradicate HIV from the body of an HIV-infected individual is obtained. More >

  • Open Access

    ARTICLE

    Vortex Ring Formation within a Spherical Container with Natural Convection

    Gerardo Anguiano-Orozco1,2, Rubén Avila3

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.3, pp. 217-254, 2009, DOI:10.3970/cmes.2009.049.217

    Abstract A numerical investigation of the transient, three dimensional, laminar natural convection of a fluid confined in a spherical container is carried out. Initially the fluid is quiescent with a uniform temperature Ti equal to the temperature of the wall of the container. At time t=0, the temperature of the wall is suddenly lowered to a uniform temperature Tw=0. The natural convection, that conducts to a vortex ring formation within the sphere, is driven by a terrestrial gravity force (laboratory gravity) and by the step change in the temperature of the wall. A scaling analysis of a simplified… More >

  • Open Access

    ARTICLE

    An Efficient Parallel MLPG Method for Poroelastic Models

    Luca Bergamaschi1,2, ,Ángeles Martínez2, Giorgio Pini2

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.3, pp. 191-216, 2009, DOI:10.3970/cmes.2009.049.191

    Abstract A meshless model, based on the Meshless Local Petrov-Galerkin (MLPG) approach, is developed and implemented in parallel for the solution of axi-symmetric poroelastic problems. The parallel code is based on a concurrent construction of the stiffness matrix by the processors and on a parallel preconditioned iterative method of Krylov type for the solution of the resulting linear system. The performance of the code is investigated on a realistic application concerning the prediction of land subsidence above a deep compacting reservoir. The overall code is shown to obtain a very high parallel efficiency (larger than 78% More >

  • Open Access

    ARTICLE

    Energy-Conserving Local Time Stepping Based on High-Order Finite Elements for Seismic Wave Propagation Across a Fluid-Solid Interface

    Ronan Madec1, Dimitri Komatitsch1,2, Julien Diaz3

    CMES-Computer Modeling in Engineering & Sciences, Vol.49, No.2, pp. 163-190, 2009, DOI:10.3970/cmes.2009.049.163

    Abstract When studying seismic wave propagation in fluid-solid models based on a numerical technique in the time domain with an explicit time scheme it is often of interest to resort to time substepping because the stability condition in the solid part of the medium can be more stringent than in the fluid. In such a case, one should enforce the conservation of energy along the fluid-solid interface in the time matching algorithm in order to ensure the accuracy and the stability of the time scheme. This is often not done in the available literature and approximate More >

Displaying 26251-26260 on page 2626 of 28590. Per Page