Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,065)
  • Open Access

    ARTICLE

    Combined Thermal Radiation and Laminar Mixed Convection in a Square Open Enclosure with Inlet and Outlet Ports

    Mohamed Ammar Abbassi1,2, Kamel Halouani1, Xavier Chesneau3, Belkacem Zeghmati3

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.1, pp. 71-96, 2011, DOI:10.3970/fdmp.2011.007.071

    Abstract Mixed convection inside a square cavity with inlet and outlet ports is numerically simulated considering thermal radiation effect. The non dimensional transfer equations, based on Boussinesq assumption and the radiative heat transfer equation are solved by the finite-volume-method and the TDMA algorithm. Results, presented for a gray fluid and a wide range of dimensionless numbers; Reynolds (Re=10-1000), Richardson (Ri=0-0.01), Boltzmann (Bo=0.1-100), radiation to conduction parameter (Rc=0.1-100), and optical thickness (τ = 0.1-10) show that the radiation significantly affects temperature distribution. Streamlines are also sensitive to radiative parameters (as optical thickness) but less than temperature. More >

  • Open Access

    ARTICLE

    Natural Convection in an Inclined T-Shaped Cavity

    Hicham Rouijaa1, Mustapha El Alami2, El Alami Semma3, Mostafa Najam2

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.1, pp. 57-70, 2011, DOI:10.3970/fdmp.2011.007.057

    Abstract This article presents a numerical study on natural convection in a bidimensional inclined "T"-shaped cavity. The governing equations are solved in the framework of a control-volume method resorting to the SIMPLEC algorithm (for the treatment of pressure-velocity coupling). Special emphasis is given to the investigation of the effect of inclination on the heat transfer and mass flow rate. Results are discussed for Prandtl number Pr=0.72, geometry with: opening width C=0.15, blocks gap D=0.5, blocks height, B=0.5 and different values of the Rayleigh number (104 ≤ Ra ≤ 106). More >

  • Open Access

    ARTICLE

    A Numerical Simulation Study of Silicon Dissolution under Magnetic Field

    A. Kidess1, N. Armour1, S. Dost1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.1, pp. 29-56, 2011, DOI:10.3970/fdmp.2011.007.029

    Abstract When a metallic liquid is subject to strong magnetic body forces, the issues of convergence and numerical stability may arise in numerical simulations. Handling of magnetic body force terms needs care. In this work we have studied two open codes and discussed the related issues. Magnetic force and mass transport terms were added to these codes. Handling the stability issues was discussed. The developed systems were validated by two benchmark cases. Then, the dissolution process of silicon into the germanium melt was selected as an application. The objective was the numerical study of the dissolution More >

  • Open Access

    ARTICLE

    Onset of Hydrothermal Instability in Liquid Bridge. Experimental Benchmark

    V. Shevtsova1, A. Mialdun1, H. Kawamura2, I. Ueno2, K. Nishino3, M. Lappa4

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.1, pp. 1-28, 2011, DOI:10.3970/fdmp.2011.007.001

    Abstract The experimental results from nine benchmark test cases conducted by five different groups are presented. The goal of this study is to build an experimental database for validation of numerical models in liquid bridge geometry. The need arises as comparison of numerical results with a single experiment can lead to a large discrepancy due to specific experimental conditions. Perfectly conducting rigid walls and, especially, idealized boundary conditions at the free surface employed in numerical studies are not always realized in experiments. The experimental benchmark has emphasized strong sensitivity of the threshold of instability to the More >

  • Open Access

    ARTICLE

    Finite Element Analysis of Elastohydrodynamic Cylindrical Journal Bearing

    L. Dammak, E. Hadj-Taïeb

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.4, pp. 419-430, 2010, DOI:10.3970/fdmp.2010.006.419

    Abstract This paper presents a short and focused analysis of the pressure development inside the fluid film related to a journal bearing (i.e. the pressure distribution in the the gap between the shaft, generally referred to as the "journal", and the bearing). The related flow is considered to be isotherm, laminar, steady and incompressible. The lubricant is assumed to be an isoviscous fluid. The Reynolds equation governing the lubricant pressure is derived from the coupled continuity and momentum balance equations written in the framework of the Stokes theory. The non linear system given by coupled equations More >

  • Open Access

    ARTICLE

    An Experimental Study Of An Electroaerodynamic Actuator

    R. Mestiri1, R.Hadaji1, S. Ben Nasrallah1

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.4, pp. 409-418, 2010, DOI:10.3970/fdmp.2010.006.409

    Abstract The electroaerodynamic actuator or plasma actuator uses the characteristics of the non-thermal surface plasmas. These plasmas are created in atmospheric pressure by a DC electrical corona discharge at the surface of a dielectric material. The two electrodes are two conductive parallel wires. The applied voltage is of several kilovolts. The corona discharge creates a tangential electric wind that can modify the boundary layer flow properties. In this paper, we present the results found for two geometric configurations: the flat plate and the cylinder. In order to study the discharge specificity, we have found the current- More >

  • Open Access

    ARTICLE

    Droplet Behavior within an LPP Ambiance

    M. Chrigui1,2, L. Schneider1, A. Zghal2, A. Sadiki1, J. Janicka1

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.4, pp. 399-408, 2010, DOI:10.3970/fdmp.2010.006.399

    Abstract This paper deals with the numerical simulation of droplet dispersion and evaporation within an LPP (Lean Premix Prevaporized) burner. The Eulerian-Lagrangian approach was used for this purpose, and a fully two way-coupling was accounted for. For the phase transition, a non-equilibrium evaporation model was applied that differs strongly from the equilibrium one where there are high evaporation rates. The non-equilibrium conditions were fulfilled in the investigated configuration, as the droplets at the inlet had a mean diameter of 50mm. The numerical results of water droplet velocities, corresponding fluctuations, and diameters were compared with experimental data. More >

  • Open Access

    ARTICLE

    Inclination Impact on the Mass Transfer Process Resulting from the Interaction of Twin Tandem Jets with a Crossflow

    A. Radhouane1, N. Mahjoub Said1, H. Mhiri1, G. Le Palec2, P. Bournot2

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.4, pp. 385-398, 2010, DOI:10.3970/fdmp.2010.006.385

    Abstract "Twin jets in crossflow" is a complex configuration that raises an increasing interest due to its presence in various common applications such as chimney stacks, film cooling, VSTOL aircrafts, etc... In the present paper, the twin jets were arranged inline with an oncoming crossflow;they were also inclined which resulted in similar elliptic cross sections of the nozzles' exits. The exploration of the flows in interaction was carried out numerically by means of the finite volume method together with the second order turbulent closure model, namely the Reynolds stress Model (RSM), and a non uniform grid… More >

  • Open Access

    ARTICLE

    Marangoni-Natural Convection in Liquid Metals in the Presence of a Tilted Magnetic Field

    S. Hamimid1, A.Amroune1

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.4, pp. 369-384, 2010, DOI:10.3970/fdmp.2010.006.369

    Abstract The Navier-Stokes and energy equations are numerically solved to investigate two-dimensional convection (originating from the combined effect of buoyancy and surface tension forces) in a liquid metal subjected to transverse magnetic fields. In particular, a laterally heated horizontal cavity with aspect ratio (height/width) =1 and Pr=0.015 is considered (typically associated with the horizontal Bridgman crystal growth process and commonly used for benchmarking purposes). The effect of a uniform magnetic field with different magnitudes and orientations on the stability of the two distinct convective solution branches (with a single-cell or two-cell pattern) of the steady-state flows More >

  • Open Access

    ARTICLE

    Convective Boiling in Metallic Foam: Experimental Analysis of the Pressure Loss

    B. Madani1, F. Topin2, L. Tadrist2

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.4, pp. 351-368, 2010, DOI:10.3970/fdmp.2010.006.351

    Abstract The present work deals with the hydraulic characterization of two-phase flow with phase change in a channel filled with metallic foam. We provide a general presentation of metallic foams including morphological characteristics, fabrication processes and industrial applications. The experimental facility, which consists of a hydrodynamic loop, the test section, measurement devices, and the data acquisition system, is presented. The Metallic foam sample tested in the present work is manufactured by SCPS (French manufacturer). N-pentane is used as a coolant fluid. The mass velocity values lie between 4 and 49 kg/ m2s, while the heating power More >

Displaying 921-930 on page 93 of 1065. Per Page