Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,453)
  • Open Access

    PROCEEDINGS

    An Investigation of Low/High Temperature Hot Corrosion Mechanism in a Ni-Base Superalloy Coated with Na2SO4+NaCl Salt Mixture

    Baishun Yang1, Biao Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011944

    Abstract Hot corrosion behavior of GH4169 nickel-based superalloy coated with 95wt.%Na2SO4+5wt.%NaCl salt mixture at 650 ℃,800 ℃, and 950 ℃ were investigated by some material characterization methods. The Experimental results showed that hot corrosion kinetics followed a parabolic, linear and exponential laws at 650 ℃, 800 ℃, and 950 ℃ respectively. Notably, as the temperature ascended from 650 ℃ to over 800 ℃, the corrosion mechanisms underwent a transition from pit corrosion to uniform erosion, corresponding to low-temperature hot corrosion (LTHC) and high-temperature hot corrosion (HTHC). At 650 ℃, a large number of semi-ellipsoidal corrosion pits manifested More >

  • Open Access

    PROCEEDINGS

    Deep-Potential Enabled Multiscale Simulation of Interfacial Thermal Transport in Boron Arsenide Heterostructures

    Jing Wu1, E Zhou1, An Huang1, Hongbin Zhang2, Ming Hu3, Guangzhao Qin1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.012552

    Abstract High thermal conductivity substrate plays a significant role for efficient heat dissipation of electronic devices, and it is urgent to optimize the interfacial thermal resistance. As a novel material with ultra-high thermal conductivity second only to diamond, boron arsenide (BAs) shows promising applications in electronics cooling [1,2]. By adopting multi-scale simulation method driven by machine learning potential, we systematically study the thermal transport properties of boron arsenide, and further investigate the interfacial thermal transport in the GaN-BAs heterostructures. Ultrahigh interfacial thermal conductance of 260 MW m-2K-1 is achieved, which agrees well with experimental measurements, and the More >

  • Open Access

    PROCEEDINGS

    A Thermodynamically Consistent Phase-Field-Micromechanics Model of Solid-State Sintering with Coupled Diffusion and Diffusion-Induced Shrinkage

    Qingcheng Yang1,*, Arkadz Kirshtein2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011229

    Abstract Sintering is a pivotal technology for processing ceramic and metallic powders into solid objects. A profound understanding of microstructure evolution during sintering is essential for manufacturing products with tailored properties. While various phase-field models have been proposed to simulate microstructure evolution in solid-state sintering, correctly incorporating the densification assumption—where particles move toward each other by rigid body motion—remains a challenge. The fundamental obstacle lies in the ad hoc treatment of particle motion, where the thermodynamical driving force cannot be derived from the system's free energy. In this work, we present a novel phase-field micromechanics model More >

  • Open Access

    PROCEEDINGS

    Optimized Design Study of Subsea Hydrothermal Closed-Loop Heat Collection System Based on Numerical Simulation

    Gaowei Yi1, Da Zhang1,2, Xinyu Liu1, Yan Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.3, pp. 1-3, 2024, DOI:10.32604/icces.2024.011165

    Abstract 1 Introduction
    With dwindling terrestrial energy resources, there's a societal consensus to harness clean, renewable energy. Submarine hydrothermal vents, hosting abundant and unexplored energy potentials, draw international academic scrutiny [1]. Yet, comprehensive research on exploiting their thermal energy systems remains sparse. Existing technologies persist with stability and efficiency challenges. While promising ventures in hydrothermal power generation exist, they grapple with heat loss, instability, limited capacity, and heightened damage susceptibility [2]. This study scrutinizes submarine hydrothermal vents, amalgamating terrestrial closed-loop geothermal technology to resolve challenges and enable efficient energy utilization [3]. Given the complex geology of these… More >

  • Open Access

    PROCEEDINGS

    Material-Structure Integrated Additive Manufacturing of Bio-Inspired Lightweight Metallic Components for Aerospace Applications

    Dongdong Gu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.013403

    Abstract In this presentation, we will report our recent research progress and prospect in the fields of laser additive manufacturing (AM) / 3D printing (3DP) of high-performance/multi-functional lightweight metallic components for aerospace applications. The innovative elements of AM including multi-material layout, innovative structural design, tailored printing process, and resultant high performance and multiple functions of components will be addressed. For a tailored printing process, some key scientific issues in AM process control deserve to be studied, including interaction of energy and printed matter, thermodynamic and dynamic behavior of printing, relationship of process parameters, microstructure and properties. More >

  • Open Access

    PROCEEDINGS

    3D Printing of Bioinspired Capillary Transistors

    Ming Gao1, Kun Zhou1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.013398

    Abstract Inspired by the unidirectional liquid spreading on Nepenthes peristome, Araucaria leaf, butterfly wings, etc., various microfluidic devices have been developed for water collection, irrigation, physical/chemical reaction, and oil–water separation [1-3]. Despite extensive progress, most natural and artificial structures fail to enhance the Laplace pressure difference or capillary force, thus suffering from a low unidirectional capillary height (< 30 mm). In this work, asymmetric re-entrant structures with long overhangs and connected forward/lateral microchannels are fabricated by three-dimensional (3D) printing, resulting in a significantly increased unidirectional capillary height of 102.3 mm for water, which approximately corresponds to the More >

  • Open Access

    PROCEEDINGS

    Additively Manufactured Dual-Faced Structured Fabric for Shape-Adaptive Protection

    Yuanyuan Tian1,2, Kun Zhou1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.013372

    Abstract Fabric-based materials have demonstrated promise for high-performance wearable applications but are currently restricted by their deficient mechanical properties. Here, we leverage the design freedom offered by additive manufacturing and a novel interlocking pattern to for the first time fabricate a dual-faced chain mail structure consisting of three-dimensional re-entrant unit cells. The flexible structured fabric demonstrates high specific energy absorption and specific strength of up to 1530 J/kg and 5900 N·m/kg, respectively, together with an excellent recovery ratio of ~80%, thereby overcoming the strength–recoverability trade-off. The designed dual-faced structured fabric compares favorably against a wide range More >

  • Open Access

    PROCEEDINGS

    Additive Manufacturing of Stents for the Coarctation of Aorta

    Yi Huang1, Giovanni Biglino1, Fengyuan Liu2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.013295

    Abstract Coarctation of aorta (CoA) is one of the congenital heart diseases with a proportion of 5% to 10%, which has a prevalence of four per 10,000 babies. As the most common cardiac defect missed at routine physical exams, CoA has a high undiagnosed rate of 60% to 80% in newborns before hospital discharge. The insertion of bare metal stents (BMS) with balloon dilatation is the useful method to reopen the narrow area of aorta. However, the stented vessel has a fixed diameter and cannot grow with the age, resulting in a relative restenosis and frequent… More >

  • Open Access

    PROCEEDINGS

    Local Von Mises Stress Change in CuZr Metallic Glass as an Indicator of the Stress Response

    Ivan Lobzenko1,*, Tomohito Tsuru1, Yoshinori Shiihara2, Takuya Iwashita3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012770

    Abstract Revealing the origin of the mechanical properties of metallic glasses (MG) is a long-standing problem. MGs respond to the external strain with the activation of collective atomic motion, but the triggers of such motions are not revealed yet, in contrast to the well-defined dislocations in crystals. In the present study we show that the change of atomic Von Mises stress is one of the key local parameters to indicate the stress response to a shear strain in metallic glass. Four random Cu50%Zr50% structures were prepared in first-principles molecular dynamics cooling process. Structures were then put… More >

  • Open Access

    PROCEEDINGS

    Catheters with Bioactive Coatings

    Shady Farah1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012639

    Abstract Catheters are among the most frequently used medical tools in modern therapies. Several diseases are treated by catheters (e.g. hydrocephalus) in cardiovascular, urological, gastrointestinal neurovascular, and ophthalmic diseases. Approximately 150 million intravascular catheters are implanted annually in the United States alone. However, although very efficient, following their insertion, catheters are subjected to numerous complications, including resistance to flow, blockage, and mechanical malfunctions, and being subjected to host-immune response and microbial infection. To overcome these complications, we proposed to develop the next generation of catheters with improved functionality and liquid flowability. We assume that polymeric coating More >

Displaying 1-10 on page 1 of 1453. Per Page