Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,169)
  • Open Access

    ABSTRACT

    Piezoelectric Bimorph Response with Imperfect Bonding Conditions

    Milazzo A.1, aimo A.1, Benedetti I.1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.6, No.3, pp. 151-156, 2008, DOI:10.3970/icces.2008.006.151

    Abstract The effect of the finite stiffness bonding between the piezoelectric plies of bimorph devices has been investigated. A boundary integral formulation for piezoelasticity, based on a multidomain technique with imperfect interface conditions, has been developed. The imperfect interface conditions between the piezoelectric layers are described in terms of linear relations between the interface tractions, in normal and tangential directions, and the respective discontinuity in displacements. Continuity of the electric potential at the interface is also assumed and an iterative procedure is implemented to avoid interface interference. Numerical analysis has been performed on bimorph configurations with series arrangement and the influence… More >

  • Open Access

    ABSTRACT

    Prediction Method of Vibration and Noise Regarding Mechanical Systems by Means of Experimental Modeling

    N.Ishizuka1, T.Okada2, T.Ikeno2, K.Shiomi2, M.Okuma3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.6, No.2, pp. 145-150, 2008, DOI:10.3970/icces.2008.006.145

    Abstract The accurate modeling of structures is very important for any engineering analysis such as simulation and design optimization of mechanical systems for noise and vibration. It is desired that such a modeling process should not be time-consuming and that the created model must have structural dynamic properties corresponding with the actual ones. But in practice, it is often difficult or even impossible to satisfy the desire by using conventional theoretical methods such as the Finite Element Method (FEM) when we consider actual mechanical systems which consist of many substructures. In this paper, under the assumption that vibration tests can be… More >

  • Open Access

    ABSTRACT

    Carbon Nanotube Transmission between Linear and Rotational Motions

    Hanqing Jiang1, Junqiang Lu2, Min-Feng Yu2, Yonggang Huang3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.6, No.2, pp. 133-144, 2008, DOI:10.3970/icces.2008.006.133

    Abstract The periodic lattice registry of multi-walled carbon nanotubes (MWCNTs) have been exploited for the possibilities of development of nanodevices. This paper studied the telescoping behaviors of double-walled carbon nanotubes (DWCNTs) by atomic-scale finite element and tight-bind Green function methods. It was found that telescoping a DWCNT (e.g., (6,3)/(12,6)) will induce a rotational motion of the inner CNT that has a chirl angle θ (0◦ < θ < 30◦). This telescoping-induced rotational motion does not exist for armchair and zigzag DWCNTs due to the symmetry of CNTs. The rotational angle is completely determined by the chirality of the inner CNT and… More >

  • Open Access

    ABSTRACT

    Constitutive Relation for Friction Describing Transition from Static to Kinetic Friction and Vice Versa

    K. Hashiguchi1, S. Ozaki2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.6, No.2, pp. 125-132, 2008, DOI:10.3970/icces.2008.006.125

    Abstract The subloading-friction model with a smooth elastic-plastic sliding transition is extended so as to describe the reduction from the static to kinetic friction and the recovery of static friction. The reduction is formulated as the plastic softening due to the separations of the adhesions of surface asperities induced by the sliding and the recovery is formulated as the creep hardening due to the reconstructions of the adhesions of surface asperities during the elapse of time under a quite high actual contact pressure between edges of asperities. More >

  • Open Access

    ABSTRACT

    in silico Method for the Identification of Mycobacterial sp. Potential Drug Targets

    Ashutosh Singh1, Shruti Mishra2, Dhwani Raghav1, Asheesh shanker1, Vinay Sharma1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.6, No.2, pp. 119-124, 2008, DOI:10.3970/icces.2008.006.119

    Abstract Drug resistance has increased the pace of war against the ever-growing challenge of mycobacterial infections particularly with the growing menace of tuberculosis (TB).Previous studies reported several essential and virulent genes of mycobacterium like virS gene and mymA operon[1] through experimental approaches. However, Post genomic approach applied for the identification of targets for tuberculosis which includes the comparison of Mycobacterium tuberculosis CDC1551 proteome against database of essential genes and proteome of Homo sapiens. A total of approx 4000 proteins were studied and compared and 19 proteins were found to possess potentiality to call as Targets. More >

  • Open Access

    ABSTRACT

    Structural Integrity of Functionally Graded Composite Structure using Mindlin-Type Finite Elements

    O. Oyekoya, D. Mba1, A. El-Zafrany

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.6, No.2, pp. 113-118, 2008, DOI:10.3970/icces.2008.006.113

    Abstract In this paper, two new Mindlin-type plate bending elements have been derived for the modelling of functionally graded plate subjected to various loading conditions such as tensile loading, in-plane bending and out-of-plane bending. The properties of the first Mindlin-type element (i.e. Average Mindlin element) are computed by using an average fibre distribution technique which averages the macro-mechanical properties over each element. The properties of the second Mindlin-type element (i.e. Smooth Mindlin element) are computed by using a smooth fibre distribution technique, which directly uses the macro-mechanical properties at Gaussian quadrature points of each element. There were two types of non-linearity… More >

  • Open Access

    ABSTRACT

    Modified Lattice Model for Mode-I Fracture Analysis of Notched Plain Concrete Beam using Probabilistic Approach

    B.K. Raghu Prasad1, T.V.R.L. Rao1, A.R.Gopalakrishnan1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.6, No.2, pp. 99-112, 2008, DOI:10.3970/icces.2008.006.099

    Abstract A modified lattice model using finite element method has been developed to study the mode-I fracture analysis of heterogeneous materials like concrete. In this model, the truss members always join at points where aggregates are located which are modeled as plane stress triangular elements. The truss members are given the properties of cement mortar matrix randomly, so as to represent the randomness of strength in concrete. It is widely accepted that the fracture of concrete structures should not be based on strength criterion alone, but should be coupled with energy criterion. Here, by incorporating the strain softening through a parameter… More >

  • Open Access

    ABSTRACT

    Computational Simulation of Mechanical Behavior of Semi-Crystalline Polymers with Randomly Distributed Rubber Particles

    M. Uchida1, N. Tada1, Y. Tomita2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.6, No.2, pp. 91-98, 2008, DOI:10.3970/icces.2008.006.091

    Abstract Micro- to mesoscopic deformation behavior of semi-crystalline polymer with randomly distributed rubber particles is evaluated by numerical simulation. In this model, dimension of mesostructure is identified by volume fraction of interface region around the rubber particles. The effects of strain rate and size of mesostructure on macroscopic stress-strain relation and strain distribution in mesoscopic area are discussed. In the earlier stage of deformation, the slope of stress-strain relation changes by rubber particle size while stress in the following deformation is mainly affected by the tensile strain rate. The anisotropic deformation in lamellar oriented interface region causes change in the strain… More >

  • Open Access

    ABSTRACT

    Low-Velocity Impact Response of Braided Carbon/Epoxy Composites

    M.V.Hosur1, M. M. Islam, S. Jeelani

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.6, No.1, pp. 81-90, 2008, DOI:10.3970/icces.2008.006.081

    Abstract In this paper, low-velocity impact response of braided composites is presented. Three types of braided fabrics were used. They were:$\pm$45, 0/$\pm$45, and 0/$\pm$60. Laminates with 7 layers of$\pm$45 and 4 layers of 0/$\pm$45, and 0/$\pm$60 were fabricated by vacuum assisted resin infusion molding process to get an average thickness ranging from 2.25 to 2.4 mm. Samples of size 10$\times$ 10 cm were then cut from the panels and impacted at 10, 20 and 30 J. Impact parameters like peak load and absorbed energy were calculated and normalized for thickness. All the samples were then subjected to ultrasonic c-scan testing to… More >

  • Open Access

    ABSTRACT

    Structural Stability of Hydrogen Storage Materials

    M. Katagiri, H. Onodera1, H. Ogawa2, N. Nishikawa3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.6, No.1, pp. 72-80, 2008, DOI:10.3970/icces.2008.006.072

    Abstract The microscopic mechanism of Hydrogen-Induced Amorphization (HIA) in C15 Laves phases of AB$_2$ compounds is studied. Experimentally, compounds in which the AA internuclear distance is reduced and BB internuclear distance expanded compared to pure crystals show Hydrogen-Induced Amorphization which suggests that the relative atomic size is the controlling factor. We investigate the role of the size effect by static and Molecular Dynamics methods using Lennard-Jones potentials. Our simulations show that in such a compound, the bulk modulus is remarkably reduced by hydrogenation compared to the isotropic tensile load, so that elastic instability is facilitated. This situation is caused by the… More >

Displaying 901-910 on page 91 of 1169. Per Page