Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,098)
  • Open Access

    ARTICLE

    Pseudogamous Apomixis in Maize and Sorghum in Diploid-Tetraploid Crosses

    Marina Tsvetova1, Lev Elkonin1,*, Yulia Italianskaya1

    Phyton-International Journal of Experimental Botany, Vol.88, No.4, pp. 389-401, 2019, DOI:10.32604/phyton.2019.07485

    Abstract Apomictic seed development is a complex process including formation of unreduced embryo sac, parthenogenetic embryo development from the egg cell, and endosperm formation either autonomously, or due to fertilization of polar nuclei by the sperm (under pseudogamous form of apomixis). In the latter case, an obstacle to the normal endosperm development is disturbance of maternal (m) -to-paternal (p) genomic ratio 2m: 1p that occurs in the cases of pollination of unreduced embryo sac with haploid sperms. Usage of tetraploid pollinators can overcome this problem because in such crosses maternal-to-paternal genomic ratio is 4m: 2p that provides formation of kernels with… More >

  • Open Access

    ARTICLE

    Biochar Application Improves the Drought Tolerance in Maize Seedlings

    A. Sattar1,*, A. Sher1,*, M. Ijaz1, M. Irfan2, M. Butt1, T. Abbas1, S. Hussain2, A. Abbas1, M. S. Ullah3, M. A. Cheema4

    Phyton-International Journal of Experimental Botany, Vol.88, No.4, pp. 379-388, 2019, DOI:10.32604/phyton.2019.04784

    Abstract Application of biochar to agricultural soils is mostly used to improve soil fertility. Experimental treatments were comprised of two factors: i) drought at two level, i.e., 80% and 40% water holding capacity (WHC) which was maintained on gravimetric basis ii) three levels of biochar i.e., control, 2 t ha-1 and 4 t ha-1 added to soil. Experimentation was done to examine potential of biochar application to enhance the growth attributes, water relations, photosynthetic pigments and antioxidants activities in maize (Zea mays L.) seedlings. Results of study revealed that biochar application increased the growth qualities (total seedlings biomass, dry weight of… More >

  • Open Access

    REVIEW

    Effects of Particle Matters on Plant: A Review

    Lijuan Kong1,2, Haiye Yu1,2, Meichen Chen1,2, Zhaojia Piao1,2, Jingmin Dang1, Yuanyuan Sui1,2,*

    Phyton-International Journal of Experimental Botany, Vol.88, No.4, pp. 367-378, 2019, DOI:10.32604/phyton.2019.09017

    Abstract The particle matter, particularly the suspended particle matter (PM ≤ 2.5) in the air is not only a risk factor for human health, but also affects the survival and physiological features of plants. Plants show advantages in the adsorption of particle matter, while the factors, such as the leaf shape, leaf distribution density and leaf surface microstructure, such as grooves, folds, stomata, flocculent projections, micro-roughness, long fuzz, short pubescence, wax and secretory products, appeared to play an important role determing their absorption capacity. In this paper, the research progress on the capture or adsorption of atmospheric particles was summarized, and… More >

  • Open Access

    REVIEW

    Biochar Production and Application in Forest Soils-A Critical Review

    Lina Gogoi1, Rumi Narzari1, Nirmali Gogoi2, Muhammad Farooq3, Rupam Kataki1,*

    Phyton-International Journal of Experimental Botany, Vol.88, No.4, pp. 349-365, 2019, DOI:10.32604/phyton.2019.08406

    Abstract The increasing deforestation with an alarming rate is the prime cause of upsetting the balance in the natural ecosystem and the livelihood of local communities. Sustainable forest management and reforestation efforts can equilibrium this destruction and maintain the protected areas. In this regard, soil management strategies for reforestation of the degraded forest land can be helpful. In this review, the potential of using biochar, a solid carbon rich product of biomass thermochemical conversion, as a soil amendment in forest soils has been discussed. The production procedures of biochar, availability of feedstocks and the biochar properties are discussed using the existing… More >

  • Open Access

    ARTICLE

    Synthesis of Poly(acrylic acid)-Grafted Carboxymethyl Cellulose for Efficient Removal of Copper Ions

    Ying Lin1, Yihua Cao1, Qingping Song1, Jiangang Gao1, Puyou Jia2,*, Hamed Alsulami3, Marwan Amin Kutbi3

    Journal of Renewable Materials, Vol.7, No.12, pp. 1403-1414, 2019, DOI:10.32604/jrm.2019.08380

    Abstract Biocompatible and high content grafted carboxymethyl cellulose-gpoly(acrylic acid) powder was successfully synthesized in an aqueous system, and used as adsorbents for the removal of Cu(II) in aqueous solution. The copolymer was characterized by FT-IR and SEM techniques. Graft copolymerization introduced a large number of carboxyl groups in the polymer and caused the micro-surface of the material to be porous. The fundamental adsorption behaviors of the material were studied. The adsorption kinetics was well fitted with pseudo-second order equation, while the adsorption isotherm preferred to be described the Langmuir equation. The maximum adsorption capacity obtained from the Langmuir model was 154.32… More >

  • Open Access

    ARTICLE

    Tribological Behavior of Plant Oil-Based Extreme Pressure Lubricant Additive in Water-Ethylene Glycol Liquid

    Haiyang Ding1, Xiaohua Yang1, Lina Xu1, Mei Li1, Shouhai Li1, Jianling Xia1,*

    Journal of Renewable Materials, Vol.7, No.12, pp. 1391-1401, 2019, DOI:10.32604/jrm.2019.07207

    Abstract A water-soluble lubricant additive (RSOPE) was prepared by esterification reaction using fatty acid from rubber seed oil. The RSOPE was added into water-ethylene glycol (W-EG) solution as lubricant additive. Dispersion stability and rheological properties were investigated. We used a four-ball tribotester to assess the lubrication performance of W-EG based fluid with the RSOPE additive. The stainless-steel surface was analyzed using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Good dispersion stability was observed in the RSOPE/W-EG solutions. Furthermore, nonNewtonian fluid behavior at low shear rates and Newtonian fluid behavior at high shear rates was exhibited. The addition of RSOPE… More >

  • Open Access

    ARTICLE

    Influence of Xyloglucan Molar Mass on Rheological Properties of Cellulose Nanocrystal/Xyloglucan Hydrogels

    Malika Talantikite1,*, Antoine Gourlay1, Sophie Le Gall1, Bernard Cathala1

    Journal of Renewable Materials, Vol.7, No.12, pp. 1381-1390, 2019, DOI:10.32604/jrm.2019.07838

    Abstract Plant components are an inexhaustible source for the construction of bio-based materials. Here we report, for the first time, the elaboration of biobased cellulose nanocrystals (CNC)/xyloglucan (XG) hydrogels. XG is a hemicellulose displaying a great affinity for cellulose surface and can be thus irreversibly adsorbed on CNC. Properties of the hydrogels were investigated by varying the molar mass of XG either by enzymatic treatment with Endoglucanase (EG2) or physical fractionation by ultrasound (US). Fractions were characterised by high-performance size exclusion chromatography (HPSEC) and their monosacchari decompositions were determined. Three fractions with high, average and small molar mass, (800, 300 and… More >

  • Open Access

    ARTICLE

    Rapid Microwave-Assisted Ionothermal Dissolution of Cellulose and Its Regeneration Properties

    Xu Wang1,3, Jianhong Zhou1,2, Bo Pang1,2, Dawei Zhao1,2,*

    Journal of Renewable Materials, Vol.7, No.12, pp. 1363-1380, 2019, DOI:10.32604/jrm.2019.08218

    Abstract Introduction of the strategy of anhydrous calcium carbonate protection incorporated with the drop by drop reaction, high-purity 1-butyl-3-methylimidazolium chloride ([Bmim] Cl) was prepared at reaction temperature of 80°C for only 10 h. Cellulose samples from different biomass sources (with different degree of polymerization characteristic) could be rapidly (no more than 10 minutes) and completely dissolved in the [Bmim] Cl using a microwave-assisted ionothermal route. Homogeneous cellulosic regenerates with high degree of polymerization and thermal stability characteristics were obtained through a coagulation process in water. Furthermore, the dissolved celluloses were readily regenerated into solid products such as casting films and spinning… More >

  • Open Access

    ARTICLE

    Fragrant Microcapsules Based on β-Cyclodextrin for Cosmetotextile Application

    Maroua Ben Abdelkader1,2,*, Nedra Azizi1, Ayda Baffoun3, Yves Chevalier2, Mustapha Majdoub1

    Journal of Renewable Materials, Vol.7, No.12, pp. 1347-1362, 2019, DOI:10.32604/jrm.2019.07926

    Abstract Microencapsulation of neroline inside microcapsules having a polyurethane shell based on β-cyclodextrin (β-CD) and hexane diisocyanate was performed by interfacial polycondensation. The polyol nature of β-CD caused tight crosslinking of microcapsules wall. Microcapsules of neroline were characterized for their chemical composition and structure of the polyurethane shell by FTIR spectroscopy, thermogravimetric analysis, optical and electron microscopy, light scattering and electrophoresis measurements. Core content and encapsulation yield were 15% and 60%, respectively. Spherical microcapsules of mean diameter 29 μm were slightly cationic with an isoelectric point of 6.3. Neroline-loaded microcapsules were fixed on cotton fabric using an impregnation technique. The functionalized… More >

  • Open Access

    ABSTRACT

Displaying 15681-15690 on page 1569 of 22098. Per Page