Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23,147)
  • Open Access

    ARTICLE

    A Higher Order Synergistic Damage Model for Prediction of Stiffness Changes due to Ply Cracking in Composite Laminates

    Chandra Veer Singh1,*

    CMC-Computers, Materials & Continua, Vol.34, No.3, pp. 227-249, 2013, DOI:10.3970/cmc.2013.034.227

    Abstract A non-linear damage model is developed for the prediction of stiffness degradation in composite laminates due to transverse matrix cracking. The model follows the framework of a recently developed synergistic damage mechanics (SDM) approach which combines the strengths of micro-damage mechanics and continuum damage mechanics (CDM) through the so-called constraint parameters. A common limitation of the current CDM and SDM models has been the tendency to over-predict stiffness changes at high crack densities due to linearity inherent in their stiffness-damage relationships. The present paper extends this SDM approach by including higher order damage terms in More >

  • Open Access

    ARTICLE

    Failure Analysis of Bolted Joints in Cross-ply Composite Laminates Using Cohesive Zone Elements

    A. Ataş1, C. Soutis2

    CMC-Computers, Materials & Continua, Vol.34, No.3, pp. 199-226, 2013, DOI:10.3970/cmc.2013.034.199

    Abstract A strength prediction method is presented for double-lap single fastener bolted joints of cross-ply carbon fibre reinforced plastic (CFRP) composite laminates using cohesive zone elements (CZEs). Three-dimensional finite element models were developed and CZEs were inserted into subcritical damage planes identified from X-ray radiographs. The method makes a compromise between the experimental correlation factors (dependant on lay-up, stacking sequence and joint geometry) and three material properties (fracture energy, interlaminar strength and nonlinear shear stress-strain response). Strength of the joints was determined from the predicted load-displacement curves considering sub-laminate and plylevel scaling effects. The predictions are More >

  • Open Access

    ARTICLE

    Corotational Formulation of Reduced Order Homogenization

    V. Filonova1, Y. Liu1, M. Bailakanavar1, J. Fish1, Z. Yuan2

    CMC-Computers, Materials & Continua, Vol.34, No.3, pp. 177-198, 2013, DOI:10.3970/cmc.2013.034.177

    Abstract A corotational formulation for reduced order homogenization is presented. While in principle the proposed method is valid for problems with arbitrary large strains, it is computational advantageous over the classical direct computational homogenization method for large rotations but moderate unit cell distortions. We validate the method for several large deformation problems including: (i) hat-section composite beam with two-dimensional chopped tow composite architecture, (ii) polyethylene microstructure consisting of 'hard' and 'soft' domains (segments), and (iii) fiber framework called fiberform either embedded or not in an amorphous matrix. More >

  • Open Access

    ARTICLE

    A New Optimal Iterative Algorithm for Solving Nonlinear Poisson Problems in Heat Diffusion

    Chih-Wen Chang1,2, Chein-Shan Liu3

    CMC-Computers, Materials & Continua, Vol.34, No.2, pp. 143-175, 2013, DOI:10.3970/cmc.2013.034.143

    Abstract The nonlinear Poisson problems in heat diffusion governed by elliptic type partial differential equations are solved by a modified globally optimal iterative algorithm (MGOIA). The MGOIA is a purely iterative method for searching the solution vector x without using the invert of the Jacobian matrix D. Moreover, we reveal the weighting parameter αc in the best descent vector w = αcE + DTE and derive the convergence rate and find a criterion of the parameter γ. When utilizing αc and γ, we can further accelerate the convergence speed several times. Several numerical experiments are carefully More >

  • Open Access

    ARTICLE

    EM Analysis of Metamaterial Based Radar Absorbing Structure (RAS) for MillimeterWave Applications

    Shiv Narayan1, Latha S.1, R M Jha1

    CMC-Computers, Materials & Continua, Vol.34, No.2, pp. 131-142, 2013, DOI:10.3970/cmc.2013.034.131

    Abstract The EM performance analysis of a multilayered metamaterial based radar absorbing structure (RAS) has been presented in this paper based on transmission line transfer matrix (TLTM) method for millimeter wave applications. The proposed metamaterial-RAS consists of cascaded DPS and MNG layers of identical configurations. It exhibits extremely low reflection (< 42 dB) at 95 GHz and absorbs more than 95% power of incident wave over the frequency range of 90.4- 100 GHz without metal backing for both TE and TM polarizations. In view of aerospace applications, the reflection, transmission, and absorption characteristics of the proposed More >

  • Open Access

    ARTICLE

    Effects of High Magnetic Field and Post-Annealing on the Evaporated Ni/Si (100) Thin Films

    Jiaojiao Du1, Guojian Li1, Qiang Wang1,2, Yongze Cao1, Jicheng He1, Yonghui Ma1

    CMC-Computers, Materials & Continua, Vol.34, No.2, pp. 117-129, 2013, DOI:10.3970/cmc.2013.034.117

    Abstract The effects of high magnetic field and post-annealing on the structural, electrical and magnetic properties of the evaporated Ni films were investigated and compared. The in-situ application of a 6 T magnetic field during evaporation or post-annealing at 200°C did not change the crystal structures of the films. However, the magnetic field makes the films exhibit the smallest grain size and the lowest surface roughness. Crystallinity was improved for both the 6 T films and the annealed films. This leads to the enhancement of saturation magnetization (Ms). The value of Ms for the 0 T More >

  • Open Access

    ARTICLE

    Shape-Based Approach for Full Field Displacement Calculation of Cellular Materials

    Yi Xiao1, Qing H. Qin1

    CMC-Computers, Materials & Continua, Vol.34, No.2, pp. 95-115, 2013, DOI:10.3970/cmc.2013.034.095

    Abstract In this paper, we propose a new approach of optical full-field measurement for displacement calculation on the surface of a cellular solid. Cell boundary points are sampled as nodes in the analysis. To find the nodal values of displacements the nodes are to be mapped onto their corresponding points in the deformed cell boundary by shape based point matching. A thin plate spline based robust point matching (TPS-RPM) approach is used instead of correlation of intensity pattern between two regions in traditional displacement measurement methods. The proposed approach involves multiple-step image processing including cell region More >

  • Open Access

    ARTICLE

    A Theoretical Analysis on Elastic and Elastoplastic Stress Solutions for Functionally Graded Materials Using Averaging Technique of Composites

    Bingfei Liu1, Guansuo Dui2,3, Benming Xie1, Libiao Xin3, Lijun Xue3

    CMC-Computers, Materials & Continua, Vol.34, No.1, pp. 83-94, 2013, DOI:10.3970/cmc.2013.034.083

    Abstract Functionally Graded Materials (FGMs) are being used in an everexpanding set of applications. For better applications, an analytical methodology using averaging technique of composites is developed to describe the thermo-elastic and thermo-elastoplastic behaviors of a three-layered FGM system subjected to thermal loading Solutions using averaging technique of composites for the stress distributions in a generic FGM system subjected to arbitrary temperature loading conditions are presented. The power-law strain hardening behaviour is assumed for the FGM metallic phase and the stress of the metallic phase are calculated to judge the plastic in this work The stress More >

  • Open Access

    ARTICLE

    Impact of Overhead Excavation on an Existing Shield Tunnel: Field Monitoring and a Full 3D Finite Element Analysis

    F. Wang1,2, D.M. Zhang1,2,3, H.H. Zhu4, H.W. Huang1,2, J.H. Yin5

    CMC-Computers, Materials & Continua, Vol.34, No.1, pp. 63-81, 2013, DOI:10.3970/cmc.2013.034.063

    Abstract This paper studies the impact of overhead excavation on an existing tunnel through both field monitoring and a full 3D numerical model. It is found that the excavation induced longitudinal heave of the tunnel is uneven with maximum heave occurring below the excavation center. Even at the same cross section, the excavation induced heave is not uniform with the most significant heave occurring at the tunnel crown. The bending moments of the tunnel lining is decreased due to the overhead excavation. The axial forces of the tunnel lining generally decrease except at the tunnel invert. More >

  • Open Access

    ARTICLE

    An RMVT-Based Finite Rectangular Prism Method for the 3D Analysis of Sandwich FGM Plates with Various Boundary Conditions

    Chih-Ping Wu1,2, Hao-Yuan Li1

    CMC-Computers, Materials & Continua, Vol.34, No.1, pp. 27-62, 2013, DOI:10.3970/cmc.2013.034.027

    Abstract A Reissner's mixed variational theorem (RMVT)-based finite rectangular prism method (FRPM) is developed for the three-dimensional (3D) analysis of sandwich functionally graded material (FGM) plates subjected to mechanical loads, in which the edge conditions of the plates are such that one pair of opposite edges is simply supported and the other pair may be combinations of free, clamped or simply supported edges. The sandwich FGM plate considered consists of two thin and stiff homogeneous material face sheets combined with an embedded thick and soft FGM core, the material properties of which are assumed to obey… More >

Displaying 22921-22930 on page 2293 of 23147. Per Page