Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25,011)
  • Open Access

    ARTICLE

    Parallel iterative procedures for a computational electromagnetic modeling based on a nonconforming mixed finite element method

    Taeyoung Ha1, Sangwon Seo2, Dongwoo Sheen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.1, pp. 57-76, 2006, DOI:10.3970/cmes.2006.014.057

    Abstract We present nonoverlapping domain decomposition methods for the approximation of both electromagnetic fields in a three-dimensional bounded domain satisfying absorbing boundary conditions. A Seidel-type domain decomposition iterative method is introduced based on a hybridization of a nonconforming mixed finite element method. Convergence results for the numerical procedure are proved by introducing a suitable pseudo-energy. The spectral radius of the iterative procedure is estimated and a method for choosing an optimal matching parameter is given. A red-black Seidel-type method which is readily parallelizable is also introduced and analyzed. Numerical experiments confirm that the presented algorithms are faster than More >

  • Open Access

    ARTICLE

    A Parallel Multi-block Method for the Unsteady Vorticity-velocity Equations

    A. Grimaldi1, G. Pascazio2, M. Napolitano3

    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.1, pp. 45-56, 2006, DOI:10.3970/cmes.2006.014.045

    Abstract This paper provides a numerical method for solving two- and three-dimensional unsteady incompressible flows. The vorticity-velocity formulation of the Navier--Stokes equations is considered, employing the vorticity transport equation and a second-order Poisson equation for the velocity. Second-order-accurate centred finite differences on a staggered grid are used for the space discretization. The vorticity equation is discretized in time using a fully implicit three-level scheme. At each physical time level, a dual-time stepping technique is used to solve the coupled system of non linear algebraic equations by various efficient relaxation schemes. Steady flows are computed by dropping More >

  • Open Access

    ARTICLE

    Optimal Tetrahedralization for Small Polyhedron: A New Local Transformation Strategy for 3-D Mesh Generation and Mesh Improvement

    Liu Jianfei1,2, Sun Shuli1,3, Wang Dachuan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.1, pp. 31-44, 2006, DOI:10.3970/cmes.2006.014.031

    Abstract Local transformation, or topological re-connection, is one of effective procedures of mesh improvement method, especially in three-dimensional situation. The commonly used local transformations for tetrahedral mesh involve changing in mesh topology (i.e. node-element connectivity relationship) within a relatively small region composed of several tetrahedra, such as 2-3 flip, 3-2 flip, 2-2 flip, 4-4 flip, etc. Although these local transformations are easy to implement and effective in removing poorly-shaped tetrahedra, it is still possible to improve the quality of mesh further by expanding the space of transformation region. In this paper, the concept of optimal tetrahedralization forMore >

  • Open Access

    ARTICLE

    Responses of Piezoelectric, Transversely Isotropic, Functionally Graded, and Multilayered Half Spaces to Uniform Circular Surface Loadings

    F. Han1, E. Pan1, A.K. Roy2, Z.Q. Yue3

    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.1, pp. 15-30, 2006, DOI:10.3970/cmes.2006.014.015

    Abstract In this paper, an analytical solution is presented to study the response of piezoelectric, transversely isotropic, functionally graded, and multilayered half spaces to uniform circular surface loadings (pressure or negative electric charge). The inhomogeneous material is exponentially graded in the vertical direction and can have multiple discrete layers. The propagator matrix method and cylindrical system of vector functions are used to first derive the solution in the transformed domain. In order to find the responses in the physical-domain, which are expressed in one-dimensional infinite integrals of the Bessel function products, we introduced and adopted an… More >

  • Open Access

    ARTICLE

    Modelling Fruit Microstructure Using Novel Ellipse Tessellation Algorithm

    H.K. Mebatsion1, P. Verboven1, Q. T. Ho1, F. Mendoza1, B. E. Verlinden2, T. A. Nguyen1, B. M. Nicolaï1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.14, No.1, pp. 1-14, 2006, DOI:10.3970/cmes.2006.014.001

    Abstract Modeling plant microstructure is of great interest to food engineers to study and explain material properties related to mass transfer and mechanical deformation. In this paper, a novel ellipse tessellation algorithm to generate a 2D geometrical model of apple tissue is presented. Ellipses were used to quantify the orientation and aspect ratio of cells on a microscopic image. The cell areas and centroids of each cell were also determined by means of a numerical procedure. These characteristic quantities were then described by means of probability density functions. The model tissue geometry was generated from the… More >

  • Open Access

    ARTICLE

    Stability analysis for inverse heat conduction problems

    Xianwu Ling1, S.N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.13, No.3, pp. 219-228, 2006, DOI:10.3970/cmes.2006.013.219

    Abstract In this paper, two matrix algebraic tools are provided for studying the solution-stabilities of inverse heat conduction problems. The propagations of the computed temperature errors, as caused by a noise in temperature measurement, are presented. The spectral norm analysis reflects the effect of the computational time steps, the sensor locations and the number of future temperatures on the computed error levels. The Frobenius norm analysis manifests the dynamic propagations of the computed errors. As an application of the norm analysis, we propose a method for the best positioning of the thermocouples. More >

  • Open Access

    ARTICLE

    Thermomechanical Analysis of Functionally Graded Composites under Laser Heating by the MLPG Method

    H. K. Ching1,2, J. K. Chen2

    CMES-Computer Modeling in Engineering & Sciences, Vol.13, No.3, pp. 199-218, 2006, DOI:10.3970/cmes.2006.013.199

    Abstract The Meshless Local Petrov-Galerkin (MLPG) method is a novel numerical approach similar to finite element methods, but it allows the construction of the shape function and domain discretization without defining elements. In this study, the MLPG analysis for transient thermomechanical response of a functionally graded composite heated by Gaussian laser beams is presented. The composite is modeled as a 2-D strip which consists of metal and ceramic phases with the volume fraction varying over the thickness. Two sets of the micromechanical models are employed for evaluating the effective material properties, respectively. Numerical results are presented More >

  • Open Access

    ARTICLE

    Evaluation of T-stress for An Interface Crack between Dissimilar Anisotropic Materials Using the Boundary Element Method

    P.D. Shah1, C.L. Tan1,2, X. Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.13, No.3, pp. 185-198, 2006, DOI:10.3970/cmes.2006.013.185

    Abstract In this paper, the path independent mutual or M-integral for the computation of the T-stress for interface cracks between dissimilar anisotropic, linear elastic solids, is developed. The required auxiliary field solution is derived from the solution of the problem of an anisotropic composite wedge subjected to a point force at its apex. The Boundary Element Method (BEM) is employed for the numerical stress analysis in which special crack-tip elements with the proper oscillatory traction singularity are used. The successful implementation of the procedure for evaluating the T-stress in a bi-material interface crack and its application are demonstrated More >

  • Open Access

    ARTICLE

    A comparison study on different MLPG (LBIE) formulations

    V. Vavourakis1, E. J. Sellountos2, D. Polyzos3

    CMES-Computer Modeling in Engineering & Sciences, Vol.13, No.3, pp. 171-184, 2006, DOI:10.3970/cmes.2006.013.171

    Abstract Comparison studies on the accuracy provided by five different elastostatic Meshless Local Petrov-Galerkin (MLPG) type formulations, based on Local Boundary Integral Equation (LBIE) considerations, are made. The main differences of these MLPG(LBIE) formulations, as they compared to each other, are concentrated on the treatment of tractions on the local and global boundaries and the way of imposing the boundary conditions of the elastostatic problem. Both the Moving Least Square (MLS) approximation scheme and the Radial Basis Point Interpolation Functions (RBPIF) are exploited for the interpolation of the interior and boundary variables. Two representative elastostatic problems More >

  • Open Access

    ARTICLE

    Interaction of Two Parallel Short Fibers in the Matrix at Loss of Stability

    A. N. Guz, V. A. Dekret1

    CMES-Computer Modeling in Engineering & Sciences, Vol.13, No.3, pp. 165-170, 2006, DOI:10.3970/cmes.2006.013.165

    Abstract Stability problem of composite material reinforced by two parallel short fibers is solved. The problem is formulated with application of equations of linearized three-dimensional theory of stability. The composite is modeled as piecewise-homogeneous medium. The influence of geometrical and mechanical parameters of the material on critical strain is investigated. More >

Displaying 24311-24320 on page 2432 of 25011. Per Page