Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17,526)
  • Open Access

    ARTICLE

    Automatic Extraction of the Sparse Prior Correspondences for Non-Rigid Point Cloud Registration

    Yan Zhu1,2, Lili Tian2, Fan Ye2, Gaofeng Sun1, Xianyong Fang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1835-1856, 2023, DOI:10.32604/cmes.2023.025662

    Abstract Non-rigid registration of point clouds is still far from stable, especially for the largely deformed one. Sparse initial correspondences are often adopted to facilitate the process. However, there are few studies on how to build them automatically. Therefore, in this paper, we propose a robust method to compute such priors automatically, where a global and local combined strategy is adopted. These priors in different degrees of deformation are obtained by the locally geometrical-consistent point matches from the globally structural-consistent region correspondences. To further utilize the matches, this paper also proposes a novel registration method based on the Coherent Point Drift… More >

  • Open Access

    ARTICLE

    A Numerical Investigation Based on Exponential Collocation Method for Nonlinear SITR Model of COVID-19

    Mohammad Aslefallah1, Şuayip Yüzbaşi2, Saeid Abbasbandy1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1687-1706, 2023, DOI:10.32604/cmes.2023.025647

    Abstract In this work, the exponential approximation is used for the numerical simulation of a nonlinear SITR model as a system of differential equations that shows the dynamics of the new coronavirus (COVID-19). The SITR mathematical model is divided into four classes using fractal parameters for COVID-19 dynamics, namely, susceptible (S), infected (I), treatment (T), and recovered (R). The main idea of the presented method is based on the matrix representations of the exponential functions and their derivatives using collocation points. To indicate the usefulness of this method, we employ it in some cases. For error analysis of the method, the… More > Graphic Abstract

    A Numerical Investigation Based on Exponential Collocation Method for Nonlinear SITR Model of COVID-19

  • Open Access

    ARTICLE

    Topology Optimization of Strength-Safe Continuum Structures Considering Random Damage

    Jiazheng Du*, Xue Cong, Ying Zhang

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1091-1120, 2023, DOI:10.32604/cmes.2023.025585

    Abstract Spacecraft in the aerospace field and military equipment in the military field are at risk of being impacted by external objects, which can cause local damage to the structure. The randomness of local damage is a new challenge for structural design, and it is essential to take random damage into account in the conceptual design phase for the purpose of improving structure’s resistance to external shocks. In this article, a random damaged structure is assumed to have damages of the same size and shape at random locations, and the random damage is considered as multiple damage conditions of the structure.… More > Graphic Abstract

    Topology Optimization of Strength-Safe Continuum Structures Considering Random Damage

  • Open Access

    ARTICLE

    Geometrically Nonlinear Flutter Analysis Based on CFD/CSD Methods and Wind Tunnel Experimental Verification

    Changrong Zhang, Hongtao Guo, Li Yu, Binbin Lv, Hongya Xia*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1743-1758, 2023, DOI:10.32604/cmes.2023.025528

    Abstract This study presents a high-speed geometrically nonlinear flutter analysis calculation method based on the high-precision computational fluid dynamics/computational structural dynamics methods. In the proposed method, the aerodynamic simulation was conducted based on computational fluid dynamics, and the structural model was established using the nonlinear finite element model and tangential stiffness matrix. First, the equilibrium position was obtained using the nonlinear static aeroelastic iteration. Second, the structural modal under a steady aerodynamic load was extracted. Finally, the generalized displacement time curve was obtained by coupling the unsteady aerodynamics and linearized structure motion equations. Moreover, if the flutter is not at a… More > Graphic Abstract

    Geometrically Nonlinear Flutter Analysis Based on CFD/CSD Methods and Wind Tunnel Experimental Verification

  • Open Access

    ARTICLE

    Effect of Measurement Error on the Multivariate CUSUM Control Chart for Compositional Data

    Muhammad Imran1, Jinsheng Sun1,*, Fatima Sehar Zaidi2, Zameer Abbas3,4, Hafiz Zafar Nazir5

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1207-1257, 2023, DOI:10.32604/cmes.2023.025492

    Abstract Control charts (CCs) are one of the main tools in Statistical Process Control that have been widely adopted in manufacturing sectors as an effective strategy for malfunction detection throughout the previous decades. Measurement errors (M.E’s) are involved in the quality characteristic of interest, which can effect the CC’s performance. The authors explored the impact of a linear model with additive covariate M.E on the multivariate cumulative sum (CUSUM) CC for a specific kind of data known as compositional data (CoDa). The average run length is used to assess the performance of the proposed chart. The results indicate that M.E’s significantly… More >

  • Open Access

    ARTICLE

    Nonlinear Flow Properties of Newtonian Fluids through Rough Crossed Fractures

    Zhenguo Liu1,2, Shuchen Li1,3, Richeng Liu3,*, Changzhou Zheng2

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1427-1440, 2023, DOI:10.32604/cmes.2023.025414

    Abstract The nonlinear flow properties of Newtonian fluids through crossed fractures are estimated by considering the influences of length, aperture, and surface roughness of fractures. A total of 252 computational runs are performed by creating 36 computational domains, in which the Navier-Stokes equations are solved. The results show that the nonlinear relationship between flow rate and hydraulic gradient follows Forchheimer’s law–based equation. When the hydraulic gradient is small (i.e., 10−6), the streamlines are parallel to the fracture walls, indicating a linear streamline distribution. When the hydraulic gradient is large (i.e., 100), the streamlines are disturbed by a certain number of eddies,… More >

  • Open Access

    ARTICLE

    A Novel Belief Rule-Based Fault Diagnosis Method with Interpretability

    Zhijie Zhou1, Zhichao Ming1,*, Jie Wang1, Shuaiwen Tang1, You Cao1, Xiaoxia Han1, Gang Xiang2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1165-1185, 2023, DOI:10.32604/cmes.2023.025399

    Abstract Fault diagnosis plays an irreplaceable role in the normal operation of equipment. A fault diagnosis model is often required to be interpretable for increasing the trust between humans and the model. Due to the understandable knowledge expression and transparent reasoning process, the belief rule base (BRB) has extensive applications as an interpretable expert system in fault diagnosis. Optimization is an effective means to weaken the subjectivity of experts in BRB, where the interpretability of BRB may be weakened. Hence, to obtain a credible result, the weakening factors of interpretability in the BRB-based fault diagnosis model are firstly analyzed, which are… More > Graphic Abstract

    A Novel Belief Rule-Based Fault Diagnosis Method with Interpretability

  • Open Access

    ARTICLE

    A Novel Motor Fault Diagnosis Method Based on Generative Adversarial Learning with Distribution Fusion of Discrete Working Conditions

    Qixin Lan, Binqiang Chen*, Bin Yao

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 2017-2037, 2023, DOI:10.32604/cmes.2023.025307

    Abstract Many kinds of electrical equipment are used in civil and building engineering. The motor is one of the main power components of this electrical equipment, which can provide stable power output. During the long-term use of motors, various motor faults may occur, which affects the normal use of electrical equipment and even causes accidents. It is significant to apply fault diagnosis for the motors at the construction site. Aiming at the problem that signal data of faulty motor lack diversity, this research designs a multi-layer perceptron Wasserstein generative adversarial network, which is used to enhance training data through distribution fusion.… More >

  • Open Access

    ARTICLE

    An Edge Computing Algorithm Based on Multi-Level Star Sensor Cloud

    Siyu Ren1, Shi Qiu2,*, Keyang Cheng3

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1643-1659, 2023, DOI:10.32604/cmes.2023.025248

    Abstract Star sensors are an important means of autonomous navigation and access to space information for satellites. They have been widely deployed in the aerospace field. To satisfy the requirements for high resolution, timeliness, and confidentiality of star images, we propose an edge computing algorithm based on the star sensor cloud. Multiple sensors cooperate with each other to form a sensor cloud, which in turn extends the performance of a single sensor. The research on the data obtained by the star sensor has very important research and application values. First, a star point extraction model is proposed based on the fuzzy… More >

  • Open Access

    ARTICLE

    A New Hybrid Approach Using GWO and MFO Algorithms to Detect Network Attack

    Hasan Dalmaz*, Erdal Erdal, Halil Murat Ünver

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1277-1314, 2023, DOI:10.32604/cmes.2023.025212

    Abstract This paper addresses the urgent need to detect network security attacks, which have increased significantly in recent years, with high accuracy and avoid the adverse effects of these attacks. The intrusion detection system should respond seamlessly to attack patterns and approaches. The use of metaheuristic algorithms in attack detection can produce near-optimal solutions with low computational costs. To achieve better performance of these algorithms and further improve the results, hybridization of algorithms can be used, which leads to more successful results. Nowadays, many studies are conducted on this topic. In this study, a new hybrid approach using Gray Wolf Optimizer… More >

Displaying 21-30 on page 3 of 17526. Per Page  

Share Link

WeChat scan