Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19,005)
  • Open Access


    MLPG Refinement Techniques for 2D and 3D Diffusion Problems

    Annamaria Mazzia1, Giorgio Pini1, Flavio Sartoretto2

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.6, pp. 475-497, 2014, DOI:10.3970/cmes.2014.102.475

    Abstract Meshless Local Petrov Galerkin (MLPG) methods are pure meshless techniques for solving Partial Differential Equations. One of pure meshless methods main applications is for implementing Adaptive Discretization Techniques. In this paper, we describe our fresh node–wise refinement technique, based upon estimations of the “local” Total Variation of the approximating function. We numerically analyze the accuracy and efficiency of our MLPG–based refinement. Solutions to test Poisson problems are approximated, which undergo large variations inside small portions of the domain. We show that 2D problems can be accurately solved. The gain in accuracy with respect to uniform discretizations is shown to be… More >

  • Open Access


    On the Formulation of Three-Dimensional Inverse Catenary for Embedded Mooring Line Modeling

    M.A.L. Martins1, E.N. Lages1

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.6, pp. 449-474, 2014, DOI:10.3970/cmes.2014.102.449

    Abstract Embedded anchors have been widely used in offshore operations, and they are known to be effective and economical solutions to anchoring problems. Aiming at contributing to the definition and understanding of the embedded mooring line behavior, this paper expands the formulation adopted at DNV Recommended Practices, for two-dimensional modeling of the interaction between the seabed and the anchor line, to three-dimensional analysis. The formulation here presented, within an elegant differential geometry approach, can now model even out of plane lines. A reference problem is then defined and solved using the obtained governing equations. Corresponding equations are implemented and solved numerically… More >

  • Open Access


    The Boundary Integral Equation for 3D General Anisotropic Thermoelasticity

    Y.C. Shiah1, C.L. Tan2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.6, pp. 425-447, 2014, DOI:10.3970/cmes.2014.102.425

    Abstract Green’s functions, or fundamental solutions, are necessary items in the formulation of the boundary integral equation (BIE), the analytical basis of the boundary element method (BEM). In the formulation of the BEM for 3D general anisotropic elasticity, considerable attention has been devoted to developing efficient algorithms for computing these quantities over the years. The mathematical complexity of this Green’s function has also posed an obstacle in the development of this numerical method to treat problems of 3D anisotropic thermoelasticity. This is because thermal effects manifest themselves as an additional domain integral in the integral equation; this has implications for the… More >

  • Open Access


    Voxel-based Analysis of Electrostatic Fields in Virtual-human Model Duke using Indirect Boundary Element Method with Fast Multipole Method

    S. Hamada1

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.5, pp. 407-424, 2014, DOI:10.3970/cmes.2014.102.407

    Abstract The voxel-based indirect boundary element method (IBEM) combined with the Laplace-kernel fast multipole method (FMM) is capable of analyzing relatively large-scale problems. A typical application of the IBEM is the electric field analysis in virtual-human models such as the model called Duke provided by the foundation for research on information technologies in society (IT’IS Foundation). An important property of voxel-version Duke models is that they have various voxel sizes but the same structural feature. This property is useful for examining the O(N) and O(D2) dependencies of the calculation times and the amount of memory required by the FMM-IBEM, where NMore >

  • Open Access


    Free-Space Fundamental Solution of a 2D Steady Slow Viscous MHD Flow

    A. Sellier1, S. H. Aydin2, M. Tezer-Sezgin3

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.5, pp. 393-406, 2014, DOI:10.3970/cmes.2014.102.393

    Abstract The fundamental free-space 2D steady creeping MHD flow produced by a concentrated point force of strength g located at a so-called source point x0 in an unbounded conducting Newtonian liquid with uniform viscosity µ and conductivity σ > 0 subject to a prescribed uniform ambient magnetic field B = Be1 is analytically obtained. More precisely, not only the produced flow pressure p and velocity u but also the resulting stress tensor field σ are expressed at any observation point x ≠ x0 in terms of usual modified Bessel functions, the vectors g, x-x0 and the so-called Hartmann layer thickness d… More >

  • Open Access


    An Improved Isogeometric Boundary Element Method Approach in Two Dimensional Elastostatics

    Vincenzo Mallardo1, Eugenio Ruocco2

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.5, pp. 373-391, 2014, DOI:10.3970/cmes.2014.102.373

    Abstract The NURBS based isogeometric analysis offers a novel integration between the CAD and the numerical structural analysis codes due to its superior capacity to describe accurately any complex geometry. Since it was proposed in 2005, the approach has attracted rapidly growing research interests and wide applications in the Finite Element context. Only recently, in 2012, it was successfully tested together with the Boundary Element Method. The combination of the isogeometric approach and the Boundary Element Method is efficient since both the NURBS geometrical representation and the Boundary Element Method deal with quantities entirely on the boundary of the problem. Actually,… More >

  • Open Access


    Analysis of 3D Anisotropic Solids Using Fundamental Solutions Based on Fourier Series and the Adaptive Cross Approximation Method

    R. Q. Rodríguez1,2, C. L. Tan2, P. Sollero1, E. L. Albuquerque3

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.5, pp. 359-372, 2014, DOI:10.3970/cmes.2014.102.359

    Abstract The efficient evaluation of the fundamental solution for 3D general anisotropic elasticity is a subject of great interest in the BEM community due to its mathematical complexity. Recently, Tan, Shiah, andWang (2013) have represented the algebraically explicit form of it developed by Ting and Lee (Ting and Lee, 1997; Lee, 2003) by a computational efficient double Fourier series. The Fourier coefficients are numerically evaluated only once for a specific material and are independent of the number of field points in the BEM analysis. This work deals with the application of hierarchical matrices and low rank approximations, applying the Adaptive Cross… More >

  • Open Access


    A (Constrained) Microstretch Approach in Living Tissue Modeling: a Numerical Investigation Using the Local Point Interpolation – Boundary Element Method

    Jean-Philippe Jehl1, Richard Kouitat Njiwa2

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.5, pp. 345-358, 2014, DOI:10.3970/cmes.2014.102.345

    Abstract Extended continuum mechanical approaches are now becoming increasingly popular for modeling various types of microstructured materials such as foams and porous solids. The potential advantages of the microcontinuum approach are currently being investigated in the field of biomechanical modeling. In this field, conducting a numerical investigation of the material response is evidently of paramount importance. This study sought to investigate the potential of the (constrained) microstretch modeling method. The problem’s field equations have been solved by applying a numerical approach combining the conventional isotropic boundary elements method with local radial point interpolation. Our resulting numerical examples demonstrated that the model… More >

  • Open Access


    Using Eulerlets to Give a Boundary Integral Formulation in Euler Flow and Discussion on Applications

    Edmund Chadwick1, Apostolis Kapoulas

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.4, pp. 331-343, 2014, DOI:10.3970/cmes.2014.102.331

    Abstract Boundary element models in inviscid (Euler) flow dynamics for a manoeuvring body are difficult to formulate even for the steady case; Although the potential satisfies the Laplace equation, it has a jump discontinuity in twodimensional flow relating to the point vortex solution (from the 2π jump in the polar angle), and a singular discontinuity region in three-dimensional flow relating to the trailing vortex wake. So, instead models are usually constructed bottom up from distributions of these fundamental solutions giving point vortex thin body methods in two-dimensional flow, and panel methods and vortex lattice methods in three-dimensional flow amongst others. Instead,… More >

  • Open Access


    Fatigue Crack Growth Reliability Analysis by Stochastic Boundary Element Method

    Xiyong Huang1, M. H. Aliabadi2, Z. Sharif Khodaei3

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.4, pp. 291-330, 2014, DOI:10.3970/cmes.2014.102.291

    Abstract In this paper, a stochastic dual boundary element formulation is presented for probabilistic analysis of fatigue crack growth. The method involves a direct differentiation approach for calculating boundary and fracture response derivatives with respect to random parameters. Total derivatives method is used to obtain the derivatives of fatigue parameters with respect to random parameters. First- Order Reliability Method (FORM) is applied to evaluate the most probable point (MPP). Opening mode fatigue crack growth problems are used as benchmarks to demonstrate the performance of the proposed method. More >

Displaying 16471-16480 on page 1648 of 19005. Per Page  

Share Link