Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25,789)
  • Open Access

    ARTICLE

    Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/ Purifi ed Cellulose Fiber Composites by Melt Blending: Characterization and Degradation in Composting Conditions

    Estefanía Lidón Sánchez-Safont1, Jennifer González-Ausejo1, José Gámez-Pérez1, José María Lagarón2, Luis Cabedo1*

    Journal of Renewable Materials, Vol.4, No.2, pp. 123-132, 2016, DOI:10.7569/JRM.2015.634127

    Abstract Novel biodegradable composites based on poly(3-hydroxybutirate-co-3-hydroxyvalerate) (PHBV) and different contents of purifi ed alpha-cellulose fi bers (3, 10, 25 and 45%) were prepared by melt blending and characterized. The composites were characterized by scanning electron microscopy (SEM), wide-angle X-ray scattering (WAXS) experiments, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanic analysis (DMA) and Shore D hardness measurements. Disintegrability under composting conditions was studied according to the ISO 20200 standard. Morphological results showed that high dispersion of the fi bers was achieved during mixing. Good adhesion on the fi ber-matrix interface was also detected by More >

  • Open Access

    ARTICLE

    Effect of Epoxidized Jatropha Oil on the Cure, Thermal, Morphological and Viscoelastic Properties of Epoxy Resins

    A. Sammaiah1, K. V. Padmaja1, K. I. Suresh*,2, R. B. N. Prasad1

    Journal of Renewable Materials, Vol.4, No.2, pp. 113-122, 2016, DOI:10.7569/JRM.2015.634118

    Abstract This article reports the effect of epoxidized jatropha oil (EJO) on the thermal, cure and viscoelastic properties of epoxy resins. Epoxidized jatropha oil with an oxirane value of 5.0 was prepared and epoxy formulations containing different concentrations of EJO were evaluated for cure, morphology, thermal and viscoelastic properties. The curing temperature of the formulations increased with increasing EJO content. The glass transition temperature of the cured films decreased from 56 °C for unmodified epoxy resin to 23 °C for the sample with 60 wt% EJO reactive diluent, suggesting good plasticizing action. The thermal decomposition was More >

  • Open Access

    ARTICLE

    Natural Fiber-Polypropylene Composites Made from Caranday Palm

    Estela Krause Sammartino1,2,3†, María Marta Reboredo4, Mirta I. Aranguren*,4

    Journal of Renewable Materials, Vol.4, No.2, pp. 101-112, 2016, DOI:10.7569/JRM.2014.634144

    Abstract Composites made from polypropylene (PP) and local South American fibers traditionally used in yarnderived craftsmanships, Caranday Palm, were studied regarding the effect of fiber addition, concentration and characteristics of the coupling agent (molecular weight and percentage of grafted maleic anhydride), as well as type of processing. A laboratory-scale intensive mixing followed by compression, and pilot plant twin extrusion followed by injection, were the two processes investigated. The use of the first one allowed the selection of processable formulations with high fiber concentration and a percentage of coupling agent below the surface fiber saturation. In fact,… More >

  • Open Access

    ARTICLE

    Mechanical and Thermal Properties of High-Density Rigid Polyurethane Foams from Renewable Resources

    M. Kirpluks1*, U. Cabulis1, A. Ivdre1, M. Kuranska2, M. Zieleniewska3, M. Auguscik3

    Journal of Renewable Materials, Vol.4, No.1, pp. 86-100, 2016, DOI:10.7569/JRM.2015.634132

    Abstract The most common sustainable solution for polyurethane (PU) materials is their production using renewable resources. Polyols derived from biomass and recycled polymers are the most promising way to do that. This study compares five different sustainable polyols as a possible raw material for production of highdensity rigid PU foams for automotive application. The goal of our study was to show that biobased polyols are a suitable replacement for polyols derived from petrochemical products. The influence of the chemical structure of polyols on the PU polymer matrix and foam properties was investigated. Two sources of PU… More >

  • Open Access

    ARTICLE

    Influence of Isocyanate Index on Selected Properties of Flexible Polyurethane Foams Modified with Various Bio-Components

    Aleksander Prociak*, Elźbieta Malewska, Szymon Bąk

    Journal of Renewable Materials, Vol.4, No.1, pp. 78-85, 2016, DOI:10.7569/JRM.2015.634129

    Abstract In this article, the results of the foaming process analysis of fl exible polyurethane with different isocyanate indexes are presented. Two types of flexible polyurethane foams (FPURF) were obtained: (1) by using petrochemical components and a rapeseed-oil-based polyol (used in the amount of 20 wt%), (2) by using petrochemical components and cellulose as a natural fi ller in the amount of 3 php (per hundred parts of polyol). The characteristic parameters of the foaming process, such as the foam’s growth velocity, the core temperature and dielectric polarization, were measured using a Foamat device. Moreover, the More >

  • Open Access

    ARTICLE

    Synthesis, Structure and Properties of Poly(ester-Urethane- Urea)s Synthesized Using Biobased Diamine

    Marcin Włoch, Janusz Datta*

    Journal of Renewable Materials, Vol.4, No.1, pp. 72-77, 2016, DOI:10.7569/JRM.2015.634130

    Abstract Modern polymer science and technology is focused on the development of partial or fully green polymers. This focus is related to green chemistry trends, which propose using natural and renewable resources as monomers in the synthesis of polymers. In this study, biobased diamine was used as a chain extender of ester-urethane prepolymer. Obtained poly(ester-urethane-urea) contains 16 wt% of biobased diamine. There is mention of an amine curing agent that is an amine derivative of dimerized fatty acids (obtained from vegetable oils). Application of two chain extenders, i.e., 1,4-butanediol and biobased diamine (applied separately or in More >

  • Open Access

    ARTICLE

    Biodegradation Pretreatment of Wood of E. grandis, E. dunnii, and E. benthamii to Work in Biorefi nery Processes

    Mary Isabel Lopretti1,2*, Natalia Irene Baldyga3, Maria Gonzalez1, Laura Beatriz Olazabal3, Marina Graciela Torres3, Fernando Resquin4, Leonidas Carrasco4

    Journal of Renewable Materials, Vol.4, No.1, pp. 66-71, 2016, DOI:10.7569/JRM.2015.634133

    Abstract Nowadays, there is a great interest in using lignocellulosic materials as substrate for the production of biorefi nery products. Eucalypti are good options to use as crops to obtain different kinds of biofuels and derivatives, since their plantations show high adaptation potential to soil and weather conditions in Uruguay. The basic process steps involved in the obtainment of biorefi nery materials are: pretreatment, hydrolysis, fermentation and products separation. As delignifi cation is an important process to obtain biorefi nery products, in this context the evaluation of the biological (BT) and hydrothermal (TT) pretreatment of different More >

  • Open Access

    ARTICLE

    Improved Permeability Properties for Bacterial Cellulose/ Montmorillonite Hybrid Bionanocomposite Membranes by In-Situ Assembling

    Itxaso Algar1, Clara Garcia-Astrain1, Alba Gonzalez2, Loli Martin3, Nagore Gabilondo1, Aloña Retegi1*, Arantxa Eceiza1*

    Journal of Renewable Materials, Vol.4, No.1, pp. 57-65, 2016, DOI:10.7569/JRM.2015.634124

    Abstract Bacterial cellulose/montmorillonite (BCMMT) hybrid bionanocomposite membranes were prepared by in-situ assembling or one-step biosynthesis process. The presence of MMT in BC membranes was confi rmed by thermogravimetric analysis and quantifi ed by mass spectrometry, resulting in bionanocomposites with MMT contents between 7–13 wt%. The incorporation of MMT during BC biosynthesis modifi ed BC morphology and led to lower porosity, even though higher water holding capacity was achieved. Bionanocomposites showed improved thermal stability and water vapor and oxygen gas barrier properties up to 70 and 80% with respect to neat BC membranes. This improvement was related More >

  • Open Access

    ARTICLE

    Biobased Additives as Biodegradability Enhancers with Application in TPU-Based Footwear Components

    Isabel Patrícia Fernandes1, Mariana Barbosa1, Joana Soares Amaral2, Vera Pinto3, José Luís Rodrigues3, Maria José Ferreira3, Maria Filomena Barreiro1*

    Journal of Renewable Materials, Vol.4, No.1, pp. 47-56, 2016, DOI:10.7569/JRM.2015.634126

    Abstract Among the wide variety of materials employed in the manufacture of shoes, thermoplastic polyurethanes (TPUs) are one of the most widely used. Given its widespread use, and associated waste management problems, the development of more biodegradable and evironmentally compatible solutions is needed. In this work, a polyester-based TPU used in the footwear industry for outsoles production was modifi ed by compounding with lignin, starch and cellulose at content of 4% (w/w). The biodegradability was evaluated by using agar plate tests with the fungi Aspergillus niger ATCC16404, the Gram-negative bacteria Pseudomonas aeruginosa ATCC9027 and an association More >

  • Open Access

    ARTICLE

    Natural Additive for Reducing Formaldehyde Emissions in Urea-Formaldehyde Resins

    Flávio Pereira1, João Pereira2, Nádia Paiva3, João Ferra3, Jorge Manuel Martins1,4, Fernão D. Magalhães1, and Luísa Carvalho1,4*

    Journal of Renewable Materials, Vol.4, No.1, pp. 41-46, 2016, DOI:10.7569/JRM.2015.634128

    Abstract This work studies the use of soy protein as a natural formaldehyde scavenger in wood particleboard production. The protein is incorporated in two forms: a) as a powder, during the blending process of wood particles with urea-formaldehyde binder resin, and b) as an aqueous solution, added at different times during resin synthesis. Analysis of variance (ANOVA) was used to evaluate the signifi cance level of two effects (amount of added soy and time of addition) on internal bond strength, thickness swelling, and formaldehyde content of the resulting panels. The results showed that soy protein can More >

Displaying 20861-20870 on page 2087 of 25789. Per Page