Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25,094)
  • Open Access

    ARTICLE

    Flexural-Torsional Buckling and Vibration Analysis of Composite Beams

    E.J. Sapountzakis1, G.C. Tsiatas2

    CMC-Computers, Materials & Continua, Vol.6, No.2, pp. 103-116, 2007, DOI:10.3970/cmc.2007.006.103

    Abstract In this paper the general flexural-torsional buckling and vibration problems of composite Euler-Bernoulli beams of arbitrarily shaped cross section are solved using a boundary element method. The general character of the proposed method is verified from the formulation of all basic equations with respect to an arbitrary coordinate system, which is not restricted to the principal one. The composite beam consists of materials in contact each of which can surround a finite number of inclusions. It is subjected to a compressive centrally applied load together with arbitrarily transverse and/or torsional distributed or concentrated loading, while… More >

  • Open Access

    ARTICLE

    Cased Hole Flexural Modes in Anisotropic Formations

    Ping’en Li1, Xianyue Su1,2, Youquan Yin1

    CMC-Computers, Materials & Continua, Vol.6, No.2, pp. 93-102, 2007, DOI:10.3970/cmc.2007.006.093

    Abstract Based on the perturbation method, for flexural wave in cased hole in anisotropic formation, the alteration in the phase velocity caused by the differences in elastic constants between anisotropic formation of interest and a reference, or unperturbed isotropic formation is obtained. Assuming the cased hole is well bonded, the Thomson-Haskell transfer matrix method is applied to calculate the dispersion relation of flexural wave in cased hole in unperturbed isotropic formation. Both the cases of a fast and slow formation are considered where the symmetry axis of a transversely isotropic (TI) formation makes an angle with… More >

  • Open Access

    ARTICLE

    A General Equation for Stress Concentration in Countersunk Holes

    Kunigal N. Shivakumar1, Anil Bhargava2, Sameer Hamoush3

    CMC-Computers, Materials & Continua, Vol.6, No.2, pp. 71-92, 2007, DOI:10.3970/cmc.2007.006.071

    Abstract A detailed and accurate three-dimensional finite element stress analysis was conducted on countersunk rivet holes in a plate subjected to tension loading. The analysis included a wide range of countersunk depths, plate thicknesses, countersunk angles and plate widths. The study confirmed some of the previous results, addressed their differences, provided many new results, and investigated countersunk angle and width effects. Using the detailed FE results and the limiting conditions, a general equation for stress concentration was developed and verified. More >

  • Open Access

    ARTICLE

    An Adaptive Multi-resolution Method for Solving PDE's

    V. Kozulić1, H. Gotovac1, B. Gotovac1

    CMC-Computers, Materials & Continua, Vol.6, No.2, pp. 51-70, 2007, DOI:10.3970/cmc.2007.006.051

    Abstract In this paper, we present a multi-resolution adaptive algorithm for solving problems described by partial differential equations. The technique is based on the collocation method using Fup basis functions, which belong to a class of Rvachev's infinitely differentiable finite functions. As it is possible to calculate derivation values of Fup basis functions of high degree in a precise yet simple way, so it is possible to efficiently apply strong formulation procedures. The mesh free method developed in this work is named Adaptive Fup Collocation Method (AFCM). The distribution of collocation points within the observed area… More >

  • Open Access

    ARTICLE

    Evaluations of the BGA Solder Ball Shape by Using Energy Method

    Heng Cheng Lin1,2, Chieh Kung3, Rong Sheng Chen2

    CMC-Computers, Materials & Continua, Vol.6, No.1, pp. 43-50, 2007, DOI:10.3970/cmc.2007.006.043

    Abstract Presented herein are the evaluation results of the BGA solder ball shape using energy method, two types of solder, viz. Sn37Pb and Sn80Pb, are selected .The geometry of the solder bump is firstly estimated using free computer software, the Surface Evolver, an interactive program which is an energy-based approach for the study of liquid droplet surfaces shaped by surface tension and other energies. The solder bump is then numerically constructed in a finite element model that simulates a BGA package. The influences of both upper and bottom solder pad radii, the surface tension on the… More >

  • Open Access

    ARTICLE

    Robust Reduction Method for Biomolecules Modeling

    Kilho Eom1, Jeong-Hee Ahn2, Seung-Chul Baek2, Jae-In Kim2, Sungsoo Na2,3

    CMC-Computers, Materials & Continua, Vol.6, No.1, pp. 35-42, 2007, DOI:10.3970/cmc.2007.006.035

    Abstract This paper concerns the application and demonstration of robust reduction methodology for biomolecular structure modeling, which is able to estimate dynamics of large proteins. The understanding of large protein dynamics is germane to gain insight into biological functions related to conformation change that is well described by normal modes. In general, proteins exhibit the complicated potential field and the large degrees of freedom, resulting in the computational prohibition for large protein dynamics. In this article, large protein dynamics is investigated with modeling reduction schemes. The performance of hierarchical condensation methods implemented in the paper is More >

  • Open Access

    ARTICLE

    Cyclic Softening Modeling with the Distribution of Non Linear Relaxation (Dnlr) Approach

    L. Dieng1, A. Abdul-Latif2, M. Haboussi, C. Cunat3

    CMC-Computers, Materials & Continua, Vol.6, No.1, pp. 21-34, 2007, DOI:10.3970/cmc.2007.006.021

    Abstract Being of particular interest in this work, a complicated phenomenon related to cyclic softening of metallic polycrystals is modeled. As in the Waspaloy, this phenomenon can take place when a non-proportional tension-torsion cyclic loading of 90° out-of-phase is followed, after cyclic steady state, by a uniaxial one (tension-compression) with the same maximum equivalent plastic strain. By using the DNLR (Distribution of Non Linear Relaxation) model recently proposed by the authors describing the cyclic plasticity of metals, a new extension is here developed. It is recognized that such an extension can satisfactorily reproduce this softening phenomenon. More >

  • Open Access

    ARTICLE

    Prediction of Springback in Straight Flanging using Finite Element Method

    S. K. Panthi1,2, N. Ramakrishnan2, K. K. Pathak2, J. S. Chouhan3

    CMC-Computers, Materials & Continua, Vol.6, No.1, pp. 13-20, 2007, DOI:10.3970/cmc.2007.006.013

    Abstract One of the important features of flanging process is elastic recovery during unloading leading to springback. The elastic recovery is associated with various tool and material parameters. It is difficult to analytically predict the elastic recovery accurately owing to the complex material deformation behavior. In this investigation, a commercially available Finite Element software is used for elasto-plastic analysis of flanging process. The springback is studied varying geometrical, material and friction parameters. The results of the simulation are validated with a few published experimental results. More >

  • Open Access

    ARTICLE

    Characteristic of Waves in A Multi-Walled Carbon Nanotube

    G. Q. Xie1,2,3, X. Han2, S. Y. Long3

    CMC-Computers, Materials & Continua, Vol.6, No.1, pp. 1-12, 2007, DOI:10.3970/cmc.2007.006.001

    Abstract A multi-walled carbon nanotube is modeled as a multiple-elastic cylindrical structure. The numerical-analytical method is adopted to analyze the characteristics of harmonic waves propagating along an anisotropic carbon nanotube. Each wall of the carbon nanotube is divided into three-nodal-line layer elements. The deflections of two adjacent tubes are coupled through the van der Waals. The governing equation of element is obtained from Hamilton's principle. A set of system equation of dynamics equilibrium for the entire structure is obtained by the assembling of all the elements. From solution of the eigenvalue equations, the dispersive characteristics, group More >

  • Open Access

    ARTICLE

    Flutter of Thermally Buckled Composite Sandwich Plates

    Le-Chung Shiau1, Shih-Yao Kuo2

    CMC-Computers, Materials & Continua, Vol.5, No.3, pp. 213-222, 2007, DOI:10.3970/cmc.2007.005.213

    Abstract A high precision high order triangular plate element is developed for the linear flutter analysis of thermally buckled composite sandwich plates. Due to uneven thermal expansion in the two local material directions, the buckling mode of the plate may be shifted from one pattern to another for certain fiber orientation or plate aspect ratio as the aerodynamic pressure is present. This buckle pattern change alters the frequencies and modes of the plate and that in turn changes the flutter coalescent modes. Numerical results show that temperature has a destabilizing effect on the flutter boundary but More >

Displaying 24171-24180 on page 2418 of 25094. Per Page