Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25,094)
  • Open Access

    ARTICLE

    A new Singular/Hypersingular MLPG (LBIE) method for 2D elastostatics

    E. J. Sellountos1, V. Vavourakis2, D. Polyzos3

    CMES-Computer Modeling in Engineering & Sciences, Vol.7, No.1, pp. 35-48, 2005, DOI:10.3970/cmes.2005.007.035

    Abstract A new meshless local Petrov-Galerkin (MLPG) type method based on local boundary integral equation (LBIE) considerations is proposed for the solution of elastostatic problems. It is called singular/hypersingular MLPG (LBIE) method since the representation of the displacement field at the internal points of the considered structure is accomplished with the aid of the displacement local boundary integral equation, while for the boundary nodes both the displacement and the corresponding traction local boundary integral equations are employed. Nodal points spread over the analyzed domain are considered and the moving least squares (MLS) interpolation scheme for the… More >

  • Open Access

    ARTICLE

    Optimized Bearing and Interlayer Friction in Multiwalled Carbon Nanotubes

    Wanlin Guo1,2, Huajian Gao2

    CMES-Computer Modeling in Engineering & Sciences, Vol.7, No.1, pp. 19-34, 2005, DOI:10.3970/cmes.2005.007.019

    Abstract A systematic investigation is performed on energy dissipation related interaction force associated with interlayer motion of sliding, rotation and telescoping between any two possible neighboring carbon nanotubes. In particular, we analyze the interlayer corrugation energy and sliding, rotation and telescoping resistance force associated with the Lennard-Jones potential as well as a registry-dependent graphitic potential. It is found that the interlayer resistance associated with both of these potentials can vary with the morphology, length and diameter of the two tubes. Energy dissipation related fluctuation of the resistant force can be as low as 10-18N/atom between the most More >

  • Open Access

    ARTICLE

    An Effective Thermal-mechanical Modeling Methodology for Large-scale Area Array Typed Packages

    H. C. Cheng1, C. Y. Yu2, W. H. Chen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.7, No.1, pp. 1-18, 2005, DOI:10.3970/cmes.2005.007.001

    Abstract In this study, a simple but effective solution methodology that integrates a modified global/local finite element (GLFE) modeling technique and a two-staged constitutive modeling strategy is presented for the thermal-mechanical modeling of solder joints in an area array typed electronic package for characterizing the associated solder joint fatigue life under the JEDEC temperature cycling specification. The effectiveness and applicability of the proposed technique are demonstrated through two case studies, each of which is associated with an area array typed test vehicle. The geometry profile of solder joints in the test vehicle is determined by the… More >

  • Open Access

    ARTICLE

    Numerical Simulations of Unstable Flow through a Spherical Bulge in a 90-degree Asymmetrical Bend

    J.M.M. Sousa1

    CMES-Computer Modeling in Engineering & Sciences, Vol.9, No.2, pp. 211-220, 2005, DOI:10.3970/cmes.2005.009.211

    Abstract Time-dependent numerical simulations of the flow through a spherical bulge in a 90-degree asymmetrical bend have been performed for Reynolds numbers in the range 100-400. The present results have demonstrated that the flow reaches asymptotically steady, symmetrical solutions for Reynolds numbers up to 300, whereas a value of 400 for this parameter leads to unsteadiness. The computed flow behavior at this higher Reynolds number has shown to be characterized by an intermittent transition between small-amplitude, irregular oscillations and large-amplitude bursts occurring at a low frequency. In addition, the unsteady flow was asymmetrical and exhibited swirl More >

  • Open Access

    ARTICLE

    Systolic Modeling of the Left Ventricle as a Mechatronic System: Determination of Myocardial Fiber's Sarcomere Contractile Characteristics and New Performance Indices

    Dhanjoo N. Ghista1,2, Liang Zhong2, Leok P.Chua2, Eddie Y-K Ng2, Soo T.Lim3, Ru S. Tan3, TerranceS-J Chua3

    Molecular & Cellular Biomechanics, Vol.2, No.4, pp. 217-234, 2005, DOI:10.3970/mcb.2005.002.217

    Abstract Background: In this paper, the left ventricle (LV) is modeled as a cylinder with myocardial fibers located helically within its wall. A fiber is modeled into myocardial structural units (MSUs); the core entity of each MSU is the sarcomeric contractile element. The relationship between the sarcomere unit's contractile force and shortening velocity is expressed in terms of the LV model's wall stress and deformation, and hence in terms of the monitored LV pressure and volume. Then, the LV systolic performance is investigated in terms of a mechatronic (excitation-contraction) model of the sarcomere unit located within the… More >

  • Open Access

    ARTICLE

    Intracellular stress transmission through actin stress fiber network in adherent vascular cells

    S. Deguchi1,2, T. Ohashi2, M. Sato2

    Molecular & Cellular Biomechanics, Vol.2, No.4, pp. 205-216, 2005, DOI:10.3970/mcb.2005.002.205

    Abstract Intracellular stress transmission through subcellular structural components has been proposed to affect activation of localized mechano-sensing sites such as focal adhesions in adherent cells. Previous studies reported that physiological extracellular forces produced heterogeneous spatial distributions of cytoplasmic strain. However, mechanical signaling pathway involved in intracellular force transmission through basal actin stress fibers (SFs), a mechano-responsive cytoskeletal structure, remains elusive. In the present study, we investigated force balance within the basal SFs of cultured smooth muscle cells and endothelial cells by (i) removing the cell membrane and cytoplasmic constituents except for materials physically attaching to the… More >

  • Open Access

    ARTICLE

    The Effect of Matrix Tension-Compression Nonlinearity and Fixed Negative Charges on Chondrocyte Responses in Cartilage

    Morakot Likhitpanichkul1, X. Edward Guo2, Van C. Mow1,3

    Molecular & Cellular Biomechanics, Vol.2, No.4, pp. 191-204, 2005, DOI:10.3970/mcb.2005.002.191

    Abstract Thorough analyses of the mechano-electrochemical interaction between articular cartilage matrix and the chondrocytes are crucial to understanding of the signal transduction mechanisms that modulate the cell metabolic activities and biosynthesis. Attempts have been made to model the chondrocytes embedded in the collagen-proteoglycan extracellular matrix to determine the distribution of local stress-strain field, fluid pressure and the time-dependent deformation of the cell. To date, these models still have not taken into account a remarkable characteristic of the cartilage extracellular matrix given rise from organization of the collagen fiber architecture, now known as the tension-compression nonlinearity (TCN)… More >

  • Open Access

    ARTICLE

    Misfolding Dynamics of Human Prion Protein

    Muhammad H. Zaman1

    Molecular & Cellular Biomechanics, Vol.2, No.4, pp. 179-190, 2005, DOI:10.3970/mcb.2005.002.179

    Abstract We report the results of longest to date simulation on misfolding of monomeric human prion protein (HuPrP). By comparing our simulation of a partially unfolded protein to the simulation of the native protein, we observe that the native protein as well as native regions in the partially unfolded protein remain in the native state, and the unfolded regions fold back with increased extended (sheet and PP-II) conformations. The misfolded regions show increased basin hopping from non-helical basins while the amino acids locked in the helical conformation tend to stay locked in that conformation. Our results More >

  • Open Access

    ARTICLE

    Forced Dissociation of Selectin-ligand Complexes Using Steered Molecular Dynamics Simulation

    Shouqin Lü1, Mian Long1,2

    Molecular & Cellular Biomechanics, Vol.2, No.4, pp. 161-178, 2005, DOI:10.3970/mcb.2005.002.161

    Abstract Selectin-ligand interactions are crucial to such biological processes as inflammatory cascade or tumor metastasis. How transient formation and dissociation of selectin-ligand bonds in blood flow are coupled to molecular conformation at atomic level, however, has not been well understood. In this study, steered molecular dynamics (SMD) simulations were used to elucidate the intramolecular and intermolecular conformational evolutions involved in forced dissociation of three selectin-ligand systems: the construct consisting of P-selectin lectin (Lec) and epidermal growth factor (EGF)-like domains (P-LE) interacting with synthesized sulfoglycopeptide or SGP-3, P-LE with sialyl Lewis X (sLeX), and E-LE with sLeX. SMD… More >

  • Open Access

    ARTICLE

    Melanoma Cell Extravasation under Flow Conditions Is Modulated by Leukocytes and Endogenously Produced Interleukin 8

    Cheng Dong1,2,3, Margaret J. Slattery2,3, Shile Liang3, Hsin-Hsin Peng2

    Molecular & Cellular Biomechanics, Vol.2, No.3, pp. 145-160, 2005, DOI:10.3970/mcb.2005.002.145

    Abstract Attachment of tumor cells to the endothelium (EC) under flow conditions is critical for the migration of tumor cells out of the vascular system to establish metastases. Innate immune system processes can potentially promote tumor progression through inflammation dependant mechanisms.\nobreakspace {} White blood cells, neutrophils (PMN) in particular, are being studied to better understand how the host immune system affects cancer cell adhesion and subsequent migration and metastasis. Melanoma cell interaction with the EC is distinct from PMN-EC adhesion in the circulation. We found PMN increased melanoma cell extravasation, which involved initial PMN tethering on… More >

Displaying 24591-24600 on page 2460 of 25094. Per Page