Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25,093)
  • Open Access

    ARTICLE

    Evaluation of Tension in Actin Bundle of Endothelial Cells Based on Preexisting Strain and Tensile Properties Measurements

    S. Deguchi1,2, T. Ohashi2, M. Sato2

    Molecular & Cellular Biomechanics, Vol.2, No.3, pp. 125-134, 2005, DOI:10.3970/mcb.2005.002.125

    Abstract Actin bundles in vascular endothelial cells (ECs) play a critical role in transmitting intracellular forces between separate focal adhesion sites. However, quantitative descriptions of tension level in single actin bundles in a physiological condition are still poorly studied. Here, we evaluated magnitude of preexisting tension in a single actin bundle of ECs on the basis of measurements of its preexisting stretching strain and tensile properties. Cultured ECs expressing fluorescently-labeled actin were treated with detergents to extract acin bundles. One end of an actin bundle was then dislodged from the substrate by using a microneedle, resulting… More >

  • Open Access

    REVIEW

    Biophysical approaches for studying the integrity and function of tight junctions

    S.R.K. Vedula1, T.S. Lim2, P.J. Kausalya3, W. Hunziker3, G. Rajagopal2, C.T. Lim1,4

    Molecular & Cellular Biomechanics, Vol.2, No.3, pp. 105-124, 2005, DOI:10.3970/mcb.2005.002.105

    Abstract Cell-cell adhesion is an extremely important phenomenon as it influences several biologically important processes such as inflammation, cell migration, proliferation, differentiation and even cancer metastasis. Furthermore, proteins involved in cell-cell adhesion are also important from the perspective of facilitating better drug delivery across epithelia. The adhesion forces imparted by proteins involved in cell-cell adhesion have been the focus of research for sometime. However, with the advent of nanotechnological techniques such as the atomic force microscopy (AFM), we can now quantitatively probe these adhesion forces not only at the cellular but also molecular level. Here, we More >

  • Open Access

    REVIEW

    Catch Bonds: Physical Models and Biological Functions

    Cheng Zhu1, Rodger P. McEver2

    Molecular & Cellular Biomechanics, Vol.2, No.3, pp. 91-104, 2005, DOI:10.3970/mcb.2005.002.091

    Abstract Force can shorten the lifetimes of receptor-ligand bonds by accelerating their dissociation. Perhaps paradoxical at first glance, bond lifetimes can also be prolonged by force. This counterintuitive behavior was named catch bonds, which is in contrast to the ordinary slip bonds that describe the intuitive behavior of lifetimes being shortened by force. Fifteen years after their theoretical proposal, catch bonds have finally been observed. In this article we review recently published data that have demonstrated catch bonds in the selectin system and suggested catch bonds in other systems, the theoretical models for their explanations, and More >

  • Open Access

    ARTICLE

    Collaboration between GEM4 and MCB

    X. Edward Guo1, Gang Bao1

    Molecular & Cellular Biomechanics, Vol.2, No.3, pp. 89-90, 2005, DOI:10.3970/mcb.2005.002.089

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    On the Inaugural of MCB: Molecular & Cellular Biomechanics

    X. Edward Guo1, Gang Bao1

    Molecular & Cellular Biomechanics, Vol.2, No.3, pp. 87-88, 2005, DOI:10.3970/mcb.2005.002.087

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Micromechanical Analysis of Interphase Damage for Fiber Reinforced Composite Laminates

    Yunfa Zhang1, Zihui Xia1,2

    CMC-Computers, Materials & Continua, Vol.2, No.3, pp. 213-226, 2005, DOI:10.3970/cmc.2005.002.213

    Abstract In the present study, the initiation and evolution of the interphase damage and their influences on the global stress-strain relation of composite laminates are predicted by finite element analysis on a micromechanical unit cell model. A thin layer of interphase elements is introduced and its stress-strain relation is derived based on a cohesive law which describes both normal and tangential separations at the interface between the fiber and matrix. In addition, a viscous term is added to the cohesive law to overcome the convergence difficulty induced by the so-called snap-back instability in the numerical analysis. More >

  • Open Access

    ARTICLE

    Effect of Constitutive Parameters on Cavity Formation and Growth in a Class of Incompressible Transversely Isotropic Nonlinearly Elastic Solid Spheres

    X.G. Yuan1,2, R.J. Zhang2

    CMC-Computers, Materials & Continua, Vol.2, No.3, pp. 201-212, 2005, DOI:10.3970/cmc.2005.002.201

    Abstract Cavity formation and growth in a class of incompressible transversely isotropic nonlinearly elastic solid spheres are described as a bifurcation problem, for which the strain energy density is expressed as a nonlinear function of the invariants of the right Cauchy-Green deformation tensor. A bifurcation equation that describes cavity formation and growth is obtained. Some interesting qualitative properties of the bifurcation equation are presented. In particular, cavitated bifurcation is examined for a solid sphere composed of an incompressible anisotropic Gent-Thomas material model with a transversely isotropy about the radial direction. The effect of constitutive parameters on… More >

  • Open Access

    ARTICLE

    Analysis of Metallic Waveguides by Using Least Square-Based Finite Difference Method

    C. Shu1,2, W. X. Wu2, C. M. Wang3

    CMC-Computers, Materials & Continua, Vol.2, No.3, pp. 189-200, 2005, DOI:10.3970/cmc.2005.002.189

    Abstract This paper demonstrates the application of a meshfree least square-based finite difference (LSFD) method for analysis of metallic waveguides. The waveguide problem is an eigenvalue problem that is governed by the Helmholtz equation. The second order derivatives in the Helmholtz equation are explicitly approximated by the LSFD formulations. TM modes and TE modes are calculated for some metallic waveguides with different cross-sectional shapes. Numerical examples show that the LSFD method is a very efficient meshfree method for waveguide analysis with complex domains. More >

  • Open Access

    ARTICLE

    The method of fundamental solutions for eigenproblems with Laplace and biharmonic operators

    S.Yu. Reutskiy1

    CMC-Computers, Materials & Continua, Vol.2, No.3, pp. 177-188, 2005, DOI:10.3970/cmc.2005.002.177

    Abstract In this paper a new meshless method for eigenproblems with Laplace and biharmonic operators in simply and multiply connected domains is presented. The solution of an eigenvalue problem is reduced to a sequence of inhomogeneous problems with the differential operator studied. These problems are solved using the method of fundamental solutions. The method presented shows a high precision in simply and multiply connected domains. The results of the numerical experiments justifying the method are presented. More >

  • Open Access

    ARTICLE

    An FEM study on crack tip blunting in ductile fracture initiation

    N. Ramakrishnan1, P. Rama Rao2

    CMC-Computers, Materials & Continua, Vol.2, No.3, pp. 163-176, 2005, DOI:10.3970/cmc.2005.002.163

    Abstract Ductile fracture is initiated by void nucleation at a characteristic distance (Ic) from the crack tip and propagated by void growth followed by coalescence with the tip. The earlier concepts expressed Ic in terms of grain size or inter-particle distance because grain and particle boundaries form potential sites for void nucleation. However, Srinivas et al. (1994) observed nucleation of such voids even inside the crack tip grains in a nominally particle free Armco iron. In an attempt to achieve a unified understanding of these observations, typical crack-tip blunting prior to ductile fracture in a standard C(T) specimen… More >

Displaying 24601-24610 on page 2461 of 25093. Per Page