Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25,657)
  • Open Access

    ARTICLE

    Microstructure Optimization in Fuel Cell Electrodes using Materials Design

    Dongsheng Li1,2, Ghazal Saheli1, Moe Khaleel2, Hamid Garmestani1

    CMC-Computers, Materials & Continua, Vol.4, No.1, pp. 31-42, 2006, DOI:10.3970/cmc.2006.004.031

    Abstract A multiscale model based on statistical continuum mechanics is proposed to predict the mechanical and electrical properties of heterogeneous porous media. This model is applied within the framework of microstructure sensitive design (MSD) to guide the design of the microstructure in porous lanthanum strontium manganite (LSM) fuel cell electrode. To satisfy the property requirement and compatibility, porosity and its distribution can be adjusted under the guidance of MSD to achieve optimized microstructure. More >

  • Open Access

    ARTICLE

    Modelling of Woven Fabrics with the Discrete Element Method

    D. Ballhause1, M. König1, B. Kröplin1

    CMC-Computers, Materials & Continua, Vol.4, No.1, pp. 21-30, 2006, DOI:10.3970/cmc.2006.004.021

    Abstract The mechanical behaviour of woven fabrics is dominated by the kinematics of the constituents on the microscopic scale. Their macroscopic response usually shows non-linearities which are due to the mobility of the interlaced yarns. The major deformation mechanisms of fabrics, i.e. the crimp interchange in case of biaxial tension and the trellising motion of the yarns in case of shear, reflect the dependency of the macroscopic material behaviour on the microstructural deformation mechanisms.
    We present a novel modelling approach for woven fabrics which is capable to represent directly and locally the microstructure and its kinematics… More >

  • Open Access

    ARTICLE

    Elastic Vibration Behaviors Oof Carbon Nanotubes Based on Micropolar Mechanics

    G. Q. Xie1,2, S. Y. Long1,3

    CMC-Computers, Materials & Continua, Vol.4, No.1, pp. 11-20, 2006, DOI:10.3970/cmc.2006.004.011

    Abstract The concept of the micropolar theory is employed to investigate vibration behaviors of carbon nanotubes. The constitutive relation has been deduced from the two-dimensional analysis of the microstructure of the carbon nanotube. Van der Waals interactions are simulated by a weak spring model. Hamilton's principle is employed to obtain dynamics equations of the multi-walled carbon nanotube. Numerical examples for both single-walled and double-walled carbon nanotubes are presented and the significant difference in vibration behaviors between them has been distinguished. Numerical results show that fundamental frequencies for the cantilever single-walled carbon nanotube decreases with increase of More >

  • Open Access

    ARTICLE

    The Method of Fundamental Solutions for Eigenfrequencies of Plate Vibrations

    D.L. Young1,2, C.C. Tsai3, Y.C. Lin1, C.S. Chen4

    CMC-Computers, Materials & Continua, Vol.4, No.1, pp. 1-10, 2006, DOI:10.3970/cmc.2006.004.001

    Abstract This paper describes the method of fundamental solutions (MFS) to solve eigenfrequencies of plate vibrations by utilizing the direct determinant search method. The complex-valued kernels are used in the MFS in order to avoid the spurious eigenvalues. The benchmark problems of a circular plate with clamped, simply supported and free boundary conditions are studied analytically as well as numerically using the discrete and continuous versions of the MFS schemes to demonstrate the major results of the present paper. Namely only true eigenvalues are contained and no spurious eigenvalues are included in the range of direct More >

  • Open Access

    ARTICLE

    Application of the Cell Method to the Simulation of Unsaturated Flow

    S. Straface1, S. Troisi, V. Gagliardi

    CMC-Computers, Materials & Continua, Vol.3, No.3, pp. 155-166, 2006, DOI:10.3970/cmc.2006.003.155

    Abstract The present work shows an alternative to the classical methods to solve the Richards' Equation (RE), used to model flow in unsaturated porous media. This alternative is named Cell Method (CM). The CM is based on a preliminary reformulation of the mathematical model in a partially discrete form, which preserves as much as possible the physical and geometrical content of the original problem, and is made possible by the existence and properties of a common mathematical structure of field theories. The goal is to maintain the focus, both in the modelling and discretization steps, on… More >

  • Open Access

    ARTICLE

    Numerical Investigation of the Multiple Dynamic Crack Branching Phenomena

    T. Nishioka1, S. Tchouikov1, T. Fujimoto1

    CMC-Computers, Materials & Continua, Vol.3, No.3, pp. 147-154, 2006, DOI:10.3970/cmc.2006.003.147

    Abstract In this study, phenomena of multiple branching of dynamically propagating crack are investigated numerically. The complicated paths of cracks propagating in a material are simulated by moving finite element method based on Delaunay automatic triangulation (MFEM BODAT), which was extended for such problems. For evaluation of fracture parameters for propagating and branching cracks switching method of the path independent dynamic J integral was used. Using these techniques the generation phase simulation of multiple dynamic crack branching was performed. Various dynamic fracture parameters, which are almost impossible to obtain by experimental technique alone, were accurately evaluated. More >

  • Open Access

    ARTICLE

    Multi-Scale Modelling and Simulation of Textile Reinforced Materials

    G. Haasemann1, M. Kästner1 and V. Ulbricht1

    CMC-Computers, Materials & Continua, Vol.3, No.3, pp. 131-146, 2006, DOI:10.3970/cmc.2006.003.131

    Abstract Novel textile reinforced composites provide an extremely high adaptability and allow for the development of materials whose features can be adjusted precisely to certain applications. A successful structural and material design process requires an integrated simulation of the material behavior, the estimation of the effective properties which need to be assigned to the macroscopic model and the resulting features of the component. In this context two efficient modelling strategies - the Binary Model (Carter, Cox, and Fleck (1994)) and the Extended Finite Element Method (X-FEM) (Moës, Cloirec, Cartraud, and Remacle (2003)) - are used to… More >

  • Open Access

    ARTICLE

    Nonlinear Dynamical Analysis in Incompressible Transversely Isotropic Nonlinearly Elastic Materials: Cavity Formation and Motion in Solid Spheres

    X.G. Yuan1, R.J. Zhang2

    CMC-Computers, Materials & Continua, Vol.3, No.3, pp. 119-130, 2006, DOI:10.3970/cmc.2006.003.119

    Abstract In this paper, the problem of cavity formation and motion in an incompressible transversely isotropic nonlinearly elastic solid sphere, which is subjected to a uniform radial tensile dead load on its surface, is examined in the context of nonlinear elastodynamics. The strain energy density associated with the nonlinearly elastic material may be viewed as the generalized forms of some known material models. It is proved that some determinate conditions must be imposed on the form of the strain energy density such that the surface tensile dead load has a finite critical value. Correspondingly, as the More >

  • Open Access

    ARTICLE

    A First-Principles Computational Framework for Liquid Mineral Systems

    B.B. Karki1, D. Bhattarai1, L. Stixrude2

    CMC-Computers, Materials & Continua, Vol.3, No.3, pp. 107-118, 2006, DOI:10.3970/cmc.2006.003.107

    Abstract Computer modeling of liquid phase poses tremendous challenge: It requires a relatively large simulation size, long simulation time and accurate interatomic interaction and as such, it produces massive amounts of data. Recent advances in hardware and software have made it possible to accurately simulate the liquid phase. This paper reports the details of methodology used in the context of liquid simulations and subsequent analysis of the output data. For illustration purpose, we consider the results for the liquid phases of two geophysically relevant materials, namely MgO and MgSiO3. The simulations are performed using the parallel first-principles More >

  • Open Access

    ARTICLE

    An Equation for Stress Concentration Factor in Countersunk Holes

    Kunigal N. Shivakumar1, Anil Bhargava1, Sameer Hamoush2

    CMC-Computers, Materials & Continua, Vol.3, No.2, pp. 97-106, 2006, DOI:10.3970/cmc.2006.003.097

    Abstract A detailed three-dimensional finite element stress analysis was conducted on straight-shank and countersunk rivet holes in a plate subjected to tension loading. The study included a wide range of plate width to radius, thickness to radius, countersunk depth to thickness ratios and countersunk angles(θc). The stress concentration is maximum at or near the countersunk edge. The stress concentration depends on countersunk depth, plate thickness and width and it is nearly independent of the countersunk angle for 80° ≤ θc ≤ 120°. Using the finite element results and limiting conditions, an equation for stress concentration factor is More >

Displaying 25031-25040 on page 2504 of 25657. Per Page