Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26,324)
  • Open Access

    ARTICLE

    A 3D Computational Model of RC Beam Using Lower Order Elements with Enhanced Strain Approach in the Elastic Range

    Amiya K. Samanta1, Somnath Ghosh2

    CMC-Computers, Materials & Continua, Vol.8, No.1, pp. 43-52, 2008, DOI:10.3970/cmc.2008.008.043

    Abstract A procedure has been described to carry out three-dimensional elastic analysis of reinforced concrete beam employing finite element technique, which uses lower order elements. The proposed procedure utilizes 8-noded isometric solid /hexahedral elements HCiS18 with enhanced assumed strain (EAS) formulation, recently developed in the literature, to predict load-deformation and internal stresses produced in case of a simply supported RC beams in the elastic regime. It models the composite behaviour of concrete and reinforcements in rigid /perfect bond situation and their mutual interaction in bond-slip condition considering continuous interface elements at the material level. Although, bond-slip More >

  • Open Access

    ARTICLE

    Thermal Cycling Degradation of T650 Carbon Fiber/PT-30 Cyanate Ester Composite

    Huanchun Chen1, Kunigal Shivakumar1

    CMC-Computers, Materials & Continua, Vol.8, No.1, pp. 33-42, 2008, DOI:10.3970/cmc.2008.008.033

    Abstract Thermal cycling degradation effect on tensile and flexural properties of Cytec T650 carbon/Lonza Primaset PT-30 cyanate ester composite rods used for gas turbine engine brush seals was evaluated. The composite rods were thermal cycled in air from room temperature to 315°C for 100, 200, 400, 600 and 800 cycles. Each thermal cycle is a one hour period with 28 minutes hold at peak temperature and a high heating/cooling rate of 73°C/min. The composite withstood the first 100 thermal cycles with less than 10% property change. After that, tensile strength and fracture strain as well as More >

  • Open Access

    ARTICLE

    Green's Function for Multilayers with Interfacial Membrane and Flexural Rigidities1

    B. Yang2, V. K. Tewary3

    CMC-Computers, Materials & Continua, Vol.8, No.1, pp. 23-32, 2008, DOI:10.3970/cmc.2008.008.023

    Abstract A three-dimensional Green's function for a material system consisting of anisotropic and linearly elastic planar multilayers with interfacial membrane and flexural rigidities has been derived. The Stroh formalism and two-dimensional Fourier transforms are applied to derive the general solution for each homogeneous layer. The Green's function for the multilayers is then solved by imposing the surface boundary condition, the interfacial displacement continuity condition, and the interfacial traction discontinuity condition. The last condition is given by the membrane and bending equilibrium equations of the interphases modeled as Kirchhoff plates. Numerical results that demonstrate the validity and More >

  • Open Access

    ARTICLE

    A Modified Multiscale Model for Microcantilever Sensor

    Yan Zhang1, Shengping Shen1

    CMC-Computers, Materials & Continua, Vol.8, No.1, pp. 17-22, 2008, DOI:10.3970/cmc.2008.008.017

    Abstract In this paper, an existed model for adsorption-induced surface stress is modified with physical clarity, based on the equilibrium of force. In the proposed multiscale model, a four-atom system is used, instead of the existed three-atom system which did not consider the force equilibrium. By analyzing the force state of an atom, the thickness of the first layer atoms can be determined. Thus, the proposed model does not need to determine the layer-thickness by experiments or artificially. The results obtained from the proposed model agree very well with the experimental data. This paper is helpful More >

  • Open Access

    ARTICLE

    The Lie-Group Shooting Method for Thermal Stress Evaluation Through an Internal Temperature Measurement

    Chein-Shan Liu1

    CMC-Computers, Materials & Continua, Vol.8, No.1, pp. 1-16, 2008, DOI:10.3970/cmc.2008.008.001

    Abstract In the present work we study numerical computations of inverse thermal stress problems. The unknown boundary conditions of an elastically deformable heat conducting rod are not given a priori and are not allowed to measure directly, because the boundary may be not accessible to measure. However, an internal measurement of temperature is available. We treat this inverse problem by using a semi-discretization technique, of which the time domain is divided into many sub-intervals and the physical quantities are discretized at these node points of discrete times. Then the resulting ordinary differential equations in the discretized More >

  • Open Access

    ARTICLE

    Computational Studies on Mechanical and Thermal Properties of Carbon Nanotube Based Nanostructures

    Arnab Chakrabarty1, Tahir Çağin1

    CMC-Computers, Materials & Continua, Vol.7, No.3, pp. 167-190, 2008, DOI:10.3970/cmc.2008.007.167

    Abstract The excellent set of properties of carbon nanotube and carbon nanotube-based nanostructures has been established by various studies. However the claimed property values and trends have not been unanimously agreed upon. Using state of the art molecular dynamics and ab initio methods, we have extensively studied the mechanical, thermal and structural properties of carbon nanotubes and carbon nanotube based nanostructures. Additionally this study aims to address the approaches used in various studies to assess the validity and influence of various definitions used for determining the physical properties as reported in earlier experiments and theoretical calculations.… More >

  • Open Access

    ARTICLE

    Controllability Conditions of Finite Oscillations of Hyper-Elastic Cylindrical Tubes Composed of a Class of Ogden Material Models

    X.G. Yuan1,2, R.J. Zhang3, H.W. Zhang1

    CMC-Computers, Materials & Continua, Vol.7, No.3, pp. 155-166, 2008, DOI:10.3970/cmc.2008.007.155

    Abstract In this paper, the dynamic inflation problems are examined for infinitely long cylindrical tubes composed of a class of transversely isotropic incompressible Ogden material models. The inner surface of the tube is subjected to a class of periodic step radial pressures relating to time. The influences of various parameters, namely, the material parameters, the structure parameters and the applied pressures, on dynamic behaviors of the tube are discussed in detail. Significantly, for some given material parameters, it is proved that the motion of the tube would present a class of nonlinear periodic oscillations for any… More >

  • Open Access

    ARTICLE

    The Lie-Group Shooting Method for Solving Classical Blasius Flat-Plate Problem

    Chih-Wen Chang1, Jiang-Ren Chang1, Chein-Shan Liu2

    CMC-Computers, Materials & Continua, Vol.7, No.3, pp. 139-154, 2008, DOI:10.3970/cmc.2008.007.139

    Abstract In this paper, we propose a Lie-group shooting method to deal with the classical Blasius flat-plate problem and to find unknown initial conditions. The pivotal point is based on the erection of a one-step Lie group element$\mathbf G(T) and the formation of a generalized mid-point Lie group element$\mathbf G(r). Then, by imposing G(T) = G(r) we can derive some algebraic equations to recover the missing initial conditions. It is the first time that we can apply the Lie-group shooting method to solve the classical Blasius flat-plate problem. Numerical examples are worked out to persuade that the novel More >

  • Open Access

    ARTICLE

    Effect of Prestrain on Formability and Forming Limit Strains During Tube Hydroforming

    C. Nikhare1, K. Narasimhan2

    CMC-Computers, Materials & Continua, Vol.7, No.3, pp. 129-138, 2008, DOI:10.3970/cmc.2008.007.129

    Abstract The tube hydroforming process is a relatively complex manufacturing process; the performance of this process depends on various factors and requires proper combination of part design, material selection and boundary conditions. In manufacturing of automotive parts, such as engine cradles, frames rails, sub-frames, cross members, and other parts from circular tubes, pre-bending and per-forming operations are often required prior to the subsequent tubular hydroforming process to fit the tubular blank in the complex die shape. Due to these pre-- hydroforming operations, some of the strains are already developed before going to the actual hydroforming process.… More >

  • Open Access

    ARTICLE

    Effective Elastic Property Estimation for Bi-continuous Heterogeneous Solids

    L.M. Xu1, H. Fan2,3, X M Xie3, C. Li3

    CMC-Computers, Materials & Continua, Vol.7, No.3, pp. 119-128, 2008, DOI:10.3970/cmc.2008.007.119

    Abstract In the present study we performed finite element simulation for bi-continuous heterogeneous solids via a random distribution of materials to predict effective elastic properties. With a random distributing scheme, a statistical analysis via finite element becomes feasible for the multi-phase heterogeneous solids. Using a two-phase bi-continuous material as example, the numerical prediction of the effective properties is obtained in terms of a mean value and standard deviation with a sample size of 30 for each of given volume fraction. The finite element simulation results fall within the analytical bounds proposed by Hashin and Shtrikman (1963) More >

Displaying 25071-25080 on page 2508 of 26324. Per Page