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ABSTRACT

Bleachers play a crucial role in practical engineering applications, and any damage incurred during their opera-
tion poses a significant threat to the safety of both life and property. Consequently, it becomes imperative to con-
duct damage diagnosis and health monitoring of bleachers. The intricate structure of bleachers, the varied types of
potential damage, and the presence of similar vibration data in adjacent locations make it challenging to achieve
satisfactory diagnosis accuracy through traditional time-frequency analysis methods. Furthermore, field environ-
mental noise can adversely impact the accuracy of bleacher damage diagnosis. To enhance the accuracy and anti-
noise capabilities of bleacher damage diagnosis, this paper proposes improvements to the existing Convolutional
Neural Network with Training Interference (TICNN). The result is an advanced Convolutional Neural Network
model with superior accuracy and robust anti-noise capabilities, referred to as Enhanced TICNN (ETICNN).
ETICNN autonomously extracts optimal damage-sensitive features from the original vibration data. To validate
the superiority of the proposed ETICNN, experiments are conducted using the bleacher model from Qatar Uni-
versity as the subject. Comparative studies under identical experimental conditions involve TICNN, Deep Con-
volutional Neural Networks with wide first-layer kernels (WDCNN), and One-Dimensional Convolutional
Neural Network (1DCNN). The experimental findings demonstrate that the ETICNN model achieves the highest
accuracy, approximately 99%, and exhibits robust classification abilities in both Phases I and II of the damage
diagnosis experiments. Simultaneously, the ETICNN model demonstrates strong anti-noise capabilities, outper-
forming TICNN by 3% to 4% and surpassing other models in performance.
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1 Introduction

With the development of the construction industry, bleachers have been widely used in gymnasiums,
schools, performances, and many other areas. The use of bleachers involves the safety of people, and it is
a significant task for researchers to diagnose the structural damage of the bleacher and evaluate the
overall risk. Traditional methods of periodic inspection are expensive and ineffective due to the structure
of the bleacher is complex and various factors that can cause damage to the bleacher, such as personnel
movement and environmental corrosion. Therefore, researchers have proposed many new fault diagnosis
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methods to make structural health monitoring (SHM) techniques better developed [1–5], this is particularly
important for predicting and diagnosing bleacher damage.

The data-driven approach is commonly employed for diagnosing bleacher damage and assessing its
overall performance, which mainly includes data acquisition, modeling, data analysis, and data feedback.
When it comes to diagnosing bleacher damage using a data-driven approach, it entails analyzing the
operational state of the bleacher based on the collected data. The traditional damage diagnosis methods
based on vibration data are usually time−domain analysis, frequency−domain analysis, and time−frequency
analysis [6–8]. In order to better represent the local characteristics of vibration data, time−frequency
analysis methods such as cepstrum analysis [9], envelope spectrum analysis [10], wavelet transform [11],
local mean decomposition [12], and short−time Fourier transform [13] are usually used. Luo et al. proposed
a fault diagnosis method based on wavelet packet and cepstrum analysis and applied it to the gearbox fault
diagnosis of wind turbine [14]. Chen et al. proposed an integrated fault diagnosis method based on
resonance sparse signal decomposition and wavelet transform, this method solved the problem of low
diagnosis accuracy of rolling bearing under strong noise interference [15]. Bayat et al. have made
significant contributions in various areas of structural engineering and dynamics. Their research includes
the utilization of Added Damping and Stiffness (ADAS) devices for energy dissipation in building
structures subjected to seismic ground motions. They have also applied He’s variational approach method
to study large-amplitude free vibration in mechanical systems with linear and nonlinear springs.
Additionally, their work involves addressing nonlinear oscillators with discontinuities, demonstrating the
effectiveness of their methods for a wide range of vibration amplitudes. Furthermore, they have proposed
an innovative algorithm for seismic damage detection in bridge piers, utilizing analytical models and the
Power Spectral Density function for dynamic characterization, with a focus on output-only methods that
eliminate the need for excitation force measurements and numerical models [16–19]. In the field of
structural damage identification and dynamic model updating, Sehgal and his colleagues have introduced
innovative methodologies to accurately assess structural damage and damping effects. Their contributions
include a two-stage damped updating method that employs multi-objective optimization techniques for
precise damage and damping parameter identification. Additionally, they applied structural dynamic model
updating to evaluate the extent of damage at six different locations on a damaged cantilever beam structure.
They further developed a novel dynamic model updating technique that incorporates response surface
models and Derringer’s function approach, enabling multi-objective optimization for updating both elastic
parameters and damping constants. Finally, their research presented the application of a weighted model
updating method based on Derringer’s functions for enhanced damage detection performance [20–23].
Dinh-Cong et al. introduced an optimization-based model updating technique using Chaos Game
Optimization (CGO), capable of addressing incomplete noisy measurements and temperature variations,
demonstrating exceptional performance in locating and quantifying damage in metallic structures [24]. In
the face of complex and changeable environment, the traditional damage diagnosis methods will become
difficult to extract features of vibration data, and the performance of damage diagnosis will not become
ideal due to the difference between data probability distribution.

With the development of deep learning, it has been widely used in image recognition [25–28], speech
recognition [29–33], driverless [34,35], and other fields. Typical deep learning models include stack
auto−encoder (SAE) [36], recurrent neural networks (RNN) [37], generative adversarial networks (GAN)
[38], and convolutional neural networks (CNN) [39]. Wang et al. used stacking autoencoders to train
deep networks and solved the problem of poor correlation between deep features and fault types [40].
Graves et al. obtained high accuracy in TIMIT speech recognition by using deep cycle neural networks
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and appropriate regularization training [41]. Zhang et al. proposed an adjunctive neural network based on an
attention mechanism that can realize remote modeling of image generation tasks and generate corresponding
detailed information by using the prompts of all feature positions [42]. Gullu et al. used artificial intelligence
techniques such as radial basis neural network (RBNN) [43], generalized regression neural network [44],
adaptive neuro−fuzzy inference system [45], and multilayer perceptron [46] to predict the unconfined
compressive strength of silty soil under different freeze−thaw cycles; experimental results show that the
prediction accuracy of the artificial intelligence technology is higher than that of the nonlinear regression
method, and RBNN has the best prediction effect [47].

Among the above multiple deep learning models, CNN has powerful feature extraction and information
fusion capabilities, which has provided new research ideas for SHM and damage diagnosis [48,49]. Lei et al.
input the collected vibration signal directly into the model and used an unsupervised two−layer neural
network structure to classify the data [50]. Jing et al. proposed a method that can learn different features
adaptively, which achieved high diagnosis accuracy of gearbox dataset provided by prognostics and
health management (PHM) [51]. Wen et al. converted the original vibration signal into two−dimensional
grayscale pictures and input them into the LeNet−5 model [52] for training, which significantly improved
diagnosis accuracy compared with the traditional methods [53]. Zhou et al. also used the original
vibration signal and performed fault diagnosis of rotating machinery based on the classical AlexNet [54]
structure [55]. Levent et al. proposed a one−dimensional convolutional neural network (1DCNN) model
based on the vibration signal for fault diagnosis of rolling bearings [56]. Abdeljaber et al. used 1DCNN
to diagnosis the fault of the bleacher model and realized real−time SHM of the bleacher [57]. However,
because the used 1DCNN model only has two convolutional layers and two fully connected layers, and
the convolutional kernel size of each layer is the same, the generalization ability of the model is
unsatisfied, and the accuracy and anti−noise ability are relatively low. In order to improve the accuracy
and anti−noise ability of CNN, Zhang et al. proposed a CNN model named convolutional neural
networks with training interference (TICNN) and applied it to the fault diagnosis of bearings with
satisfactory results [58].

Although the diagnosis accuracy of the TICNNmodel in bearing fault diagnosis has been close to 100%,
there are still some challenges when applying it to bleacher damage diagnosis. (1) The existence of its deep
structure leads to a large amount of computation in the training process of the model, which hinders real−time
diagnosis of bleacher issues. (2) Due to the similarity of damage data in the adjacent locations of the bleacher,
the classification accuracy is reduced, and the final result is not ideal. In order to improve the accuracy and
anti−noise ability of the damage diagnosis of the bleacher, this paper improved TICNN and proposed an
enhanced TICNN model named ETICNN. The proposed new model changed the data input length of the
original model, and optimized a series of structural parameters of the original model, such as the
convolutional layer, pooling layer, and fully connected layer, so as to reduce the calculation amount and
total number of parameters of the original model, and avoided overfitting of the model. The contribution
of this paper is to propose an ETICNN model with high accuracy and strong anti−interference ability and
apply this model to bleacher damage diagnosis.

2 Structure and Data Source of Bleacher

This paper took the bleacher simulator built by Qatar University (QU) as the experimental object, and
the experimental data in this paper also came from the open data set of QU. The 3D model of QU’s bleacher
simulator and the specific location of each acceleration sensor are shown in Fig. 1 [57]. It can be seen from
the figure that the overall size of the bleacher simulator built by QU is about 4.2 m × 4.2 m, it consists of
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8 main beams, 25 filled beams, and 4 columns. Different damages of the bleacher can be obtained by
loosening the bolts at different joints. The bleacher simulator can accommodate 30 spectators, and
30 acceleration sensors were installed at the location shown in Fig. 1 to collect the vibration data of the
bleacher. These accelerometers consist of 27 PCB model 393B04 units and 3 B&K model 8344 units. To
attach these accelerometers to the steel structure, magnetic mounting plates of PCB model 080A121 were
used. Additionally, a modal shaker (Model 2100E11) was employed to induce vibration in the structure.
The vibration signal was delivered to the shaker through a SmartAmp 2100E21−400 power amplifier.
Two 16−channel data acquisition devices were utilized to generate input signals for the shaker and collect
acceleration output signals. It can test the performance of multiple damage detection methods by
collecting data under different structural configurations during the experiment. The number of the sensor
is the same as the number of the location where it is installed. In this paper, the vibration data collected
by sensors numbered 1−30 are used as training samples to study the damage diagnosis of the bleacher.

3 Damage Diagnosis of Bleacher

3.1 Damage Diagnosis Principle
The damage diagnosis method for the bleacher based on CNN proposed in this paper can determine the

damage location through vibration data. It uses CNN to independently train data samples from
30 acceleration sensors, and obtains 30 CNN models. The overall damage diagnosis principle of the
bleacher includes data acquisition, data preprocessing, CNN model training, and damage diagnosis
results. Data acquisition is to collect the vibration signals. Data preprocessing is mainly used to obtain
enough input data that can be accepted by CNN model. CNN model training is mainly used for feature
extraction and classification, and different features are used to distinguish the damage of the bleacher, and
the specific damage diagnosis results can be obtained.

3.2 Damage Diagnosis Process
The damage diagnosis process is shown in Fig. 2. It includes data acquisition and preprocessing, CNN

model training, and damage probability calculation.

(1) Data acquisition and preprocessing

Data acquisition and preprocessing include data acquisition, data extraction and separation, data
enhancement and data normalization.

Figure 1: 3D model of QU’s bleacher simulator
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a. Data acquisition, extraction and separation

Assuming n locations to be detected during the experiment, the bleacher needs to be tested n + 1 times.
The first experiment is to destroy the structure at the location numbered 1. The n experiment is to destroy the
structure at the location numbered n, and then collect the vibration signal. The n + 1 experiment is to collect
the vibration signal when the bleacher is undamaged. The data collected by all acceleration sensors under the
condition of damaged were denoted as D, and those collected under the condition of undamaged were
denoted as U. Then the vibration signals were extracted and separated to make a dataset. It can be written
as follows:

D ¼ ½D1;D2; � � � ;Dn� (1)

U ¼ ½U1;U2; � � � ;Un� (2)

b. Data enhancement

The number of direct slices of the data collected during the experiment is insignificant. In order to avoid
the problem of model overfitting caused by too small dataset, data enhancement methods are used to obtain
more samples. Data enhancement is realized by using sliding window overlapping sampling. There is an
overlap between the previous signal and the latter signal of the generated dataset. For example, for a
signal with K points, N samples can be obtained by using sliding window overlapping sampling with a
window size of W and step of S.

N ¼ K �W

S
þ 1 (3)

The K of the collected dataset published by QU is about 260,000. If W is 1024 and S is 128, the total
number of data samples N is 2040. DF and UF were used to represent damaged and undamaged data
after data enhancement, respectively.

Figure 2: Damage diagnosis process
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DF ¼ ½DF1;DF2; � � � ;DFn� (4)

UF ¼ ½UF1;UF2; � � � ;UFn� (5)

c. Data normalization

In deep learning, different feature vectors usually have different dimensions, which will affect the results
of data analysis. In order to solve the comparability between data index, data should usually be normalized.
Data normalization can summarize the statistical distribution of uniform samples. The objective function of
normalized data will be smoother during the training process, which can speed up the training, avoid the
problems of gradient disappearance and gradient explosion, and ensure the network training more stable.
The data in each case of DF and UF (4080 groups in total) were normalized between [−1, 1], and DFN
and UFN were used to represent the data after normalization and disorder, respectively.

DFN ¼ ½DFN1;DFN2; � � � ;DFNn� (6)

UFN ¼ ½UFN1;UFN2; � � � ;UFNn� (7)

(2) CNN model training

The normalized data can be used to train the CNN at each location separately. Firstly, the data was
divided into two parts: the training set and validation set. The total number of training samples
corresponding to each CNN is 4080. 70% of the data was used as the training set, and the remaining 30%
was used as the validation set. Then the divided data was input into the model for training, and the
trained CNN model was saved for testing. The function of the training set was to constantly update
the model parameters through forward propagation and back propagation to achieve the best effect of the
model. The function of the validation set was to conveniently observe the performance of the model
during the training process by calculating performance evaluation indicators such as the accuracy. In the
training process, Adam optimization algorithm was used to ensure that the model can achieve the best
performance. The data of the test set was new data that was not involved in the training process. The
number of samples in the test set was the same as the number of samples in the training set, and it was
necessary to randomly disrupt the order, and then input it into the saved CNN model to get the prediction
results.

(3) Calculate the actual damage probability

The n−th CNN model saved by training can be used to predict and classify the damage at the n−th
location. In this paper, the actual damage probability (Pod) was used to express the damage degree of a
certain location. The larger the value is, the more serious the damage is. The calculation equation of the
Pod can be written as follows:

Pod ¼ DN

TN
(8)

whereDN represents the number of damaged samples predicted by the model, TN represents the total number
of test set samples.

4 Structure of ETICNN Model

In order to improve the accuracy and anti−noise ability of the damage diagnosis of the bleacher, this
paper improved TICNN and proposed an enhanced TICNN model named ETICNN. The detailed
structures of TICNN model and ETICNN model are shown in Fig. 3.
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In convolutional neural network, the size of the receptive field affects the feature extraction ability of the
convolutional layer. When the receptive field is large, the collected feature information tends to be more
macroscopic, and when the receptive field is small, the feature information tends to be more local. Under
the same experimental conditions, the influence of kernel size and stride of the first convolutional layer
on accuracy and loss was studied, and the appropriate kernel size and stride were selected. The results are
shown in the Table 1. As can be seen from the table, when the kernel size is 128 and the stride is 8, the
model has the highest accuracy and lower loss value. At this time, Train−Acc is 98.8%, Valid−Acc is
98.6%, Train−Loss is 0.068, Valid−Loss is 0.051.

It can be seen from Fig. 3 that after the model was adjusted, the convolutional kernel size of the first
convolutional layer was set to 128 × 1, and the number of convolution kernels was set to 16, and
Dropout was added after the first convolutional layer to suppress the overfitting phenomenon of the
model. The convolutional kernel size in the second part was set to 64 × 1, the number of convolution
kernels was set to 32, and the stride was set to 4. The convolutional kernel size in the third part was set
to 32 × 1, the number of convolution kernels was set to 64, and the stride was set to 2. Through the
intermediate transition part, the overall receptive field has been increased, which can avoid the direct use
of small convolution kernels in the early stage to extract the smaller receptive field. The convolutional
kernel size of the remaining convolutional layers was set to 4 × 1, the number of convolution kernels was
gradually increased to 256, and the stride was still set to 1.

Figure 3: Structures of TICNN model and ETICNN model

SDHM, 2024 7



It can be also seen from Fig. 3 that after each convolutional layer of the model, the max pooling layer and
the BN layer were added. The distribution of data can be consistent through BN, thus making the model more
stable during training. At the end of the model, the global average pooling layer was used instead of the fully
connected layer. The global average pooling layer is an excellent structural choice for establishing the
relationship between the feature map and the category. It sums the overall spatial information, and the
spatial transformation of the input features is more stable. In addition, it does not require parameter
optimization and can avoid the occurrence of overfitting.

5 Experiments

The contents of the experiments include damage diagnosis experiment phase I, damage diagnosis
experiment phase II, ablation experiment, comparative experiment of diagnosis accuracy, and comparative
experiment of anti−noise ability. In damage diagnosis experiment phase I, a binary classification method
was used to train the neural network model of each location to ensure the diagnosis accuracy of the
ETICNN of each location, so as to accurately distinguish between damaged and undamaged cases. The
damage diagnosis experiment phase II was mainly conducted by using the same neural network model
for multi−classification training. The purpose of multi−classification training is to test the classification
and generalization ability of the network model under different conditions to determine the damage
location of the bleacher. Due to the complexity of the damage case and the large number of damage
locations involved in the experiment, the collected vibration data is huge. Therefore, only the data of
sensors numbered 1−10 were selected as the research object in the damage diagnosis experiment phase II.
For these 10 damage locations, the convolutional neural network was used for multi−classification
training to identify the damage locations and test the generalization ability of the network model. The
purpose of the ablation experiment is to prove the rationality of the model improvement and the impact
of each part of the model on the performance. The comparative experiment of diagnosis accuracy and
comparative experiment of anti−noise ability mainly compare the diagnosis ability between different
models. The deep learning framework for these experiments is based on Tensorflow version 2.3.1, and
the computer is a laptop with Core i5−7300HQ and NVIDIA GeForce GTX 1050 Ti GPU.

Table 1: Influence of kernel size and stride of the first convolutional layer on accuracy and loss

Kernel size Stride Train−Loss Train−Acc Valid−Loss Valid−Acc

32 4 0.051 97.4% 0.078 96.6%

32 8 0.178 93.7% 0.261 93.2%

32 16 0.384 86.5% 0.213 92.6%

64 4 0.073 97.7% 0.187 94.8%

64 8 0.131 95.8% 0.137 95.3%

64 16 0.261 91.2% 0.224 92.8%

128 4 0.082 97.7% 0.19 94.9%

128 8 0.068 98.8% 0.051 98.6%

128 16 0.172 94.2% 0.157 94.9%

256 4 0.071 97.9% 0.053 96.7%

256 8 0.098 98.1% 0.045 97.2%

256 16 0.113 96.4% 0.048 97.5%
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5.1 Damage Diagnosis Experiment Phase I
In the damage diagnosis experiment phase I, firstly, it is necessary to train the data collected by each

sensor to obtain the ETICNN model of the corresponding location. The diagnosis effect of each ETICNN
model was ensured through a series of analyses on the accuracy and confusion matrix of the training
results. Then, the unknown data collected at each location were input into the corresponding ETICNN
model to determine whether each location is damaged, so as to determine the specific damage location.

(1) Analysis of training results

There are 30 locations for damage diagnosis, so 30 training results have been obtained. For convenience,
this paper took the training results of the data collected by the sensor numbered 5 (location 5) as an example
to illustrate the performance of the ETICNN model. The accuracy and Loss at location 5 is shown in Fig. 4.

As can be seen from Fig. 4, when the training epoch reaches 5, the amplitude change of accuracy and
Loss curves begin to stabilize. When the training epoch reaches 25, the Loss is close to 10−3, and the accuracy
is close to 100%. When the training epoch reaches 30, the accuracy curves and the Loss curves of the training
set and the validation set are nearly coincident. This shows that the ETICNN model has fast convergence
speed and high accuracy, and can be used to achieve accurate damage diagnosis of the bleacher.

(2) Confusion matrix analysis

In deep learning, the confusion matrix, also known as the error matrix, is used to summarize the results
of a classifier. The recall and accuracy of the neural network can be obtained by calculating the data in the
confusion matrix, which can help analyze the specific situation of each class and observe which class is not
easily distinguishable between the actual class and the predicted class. The confusion matrix obtained by
training data collected by the sensor numbered 5 is also used as an example; it is shown in Fig. 5.

Figure 4: Accuracy and loss at location 5

Figure 5: Confusion matrix at location 5
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As can be seen from Fig. 5, when the training epoch is 3, the accuracy is 88.5% and recall is 77%. When
the training epoch is 30, the accuracy is 100% and the recall is also 100%. These results show that when
ETICNN model is used to diagnose the damage location of the bleacher, it only needs 30 training epochs
to reach a higher accuracy, which again proves that the ETICNN model has a faster convergence speed
and higher accuracy.

(3) Diagnosis of specific damage location

In order to test the effectiveness of the trained ETICNN model in the actual process, in this paper, firstly,
different locations of the bleacher were damaged under various conditions, and then the results were carried
out by using the ETICNN model. When conducting damage diagnosis for different locations of the bleacher,
this paper first used the new data not participating training as the test set, and input it into the model for
diagnosis, and then calculated the probability of damage (Pod) of each location to determine whether the
location is damaged. In the experiment, six kinds of damage cases were analyzed for the structure at
locations 1−10.

In addition, these six kinds of damage cases can be divided into three categories. 1). Single location
damage cases (only one location of the structure was damaged, the structure at locations 2, 5, and 9 was
damaged separately, and other locations were intact, a total of 3 damage cases). 2). Two locations damage
cases (at the same time, the structures at two locations were damaged; the structures at locations 1 and
6 were damaged at the same time; the structures at locations 4 and 7 were damaged at the same time; a
total of two damage cases). 3). The structures at all locations were undamaged (one damage case). The
damage diagnosis results are shown in Fig. 6.

As can be seen from Fig. 6, the ETICNN model performs well in various structural damage cases. In the
case of single location damage, the Pod at the specific damage location reaches as high as 99%, while the Pod
of other undamaged locations is less than 20%. In the case of two locations damage, the damage probability is
greater than 90%, and the probability of undamaged locations is less than 20%. In the undamaged case, the
damage probability at all 10 locations is relatively low, around 15%. The experiment results have a high
degree of distinction, and the specific damage location can be accurately determined by the peak in the
figure. It can be seen from the training and test results of the damage location diagnosis of the bleacher
that the ETICNN model can achieve ideal results. It can accurately diagnose whether the structure of the
bleacher at a specific location is damaged.

5.2 Damage Diagnosis Experiment Phase II
The damage diagnosis experiment phase II is mainly to carry out multi−classification identification for

structural damage at locations 1−10. That is to say, the structures at 10 locations are destroyed separately, and
then the neural network model is used for classification and identification to obtain 10 different damaged
conditions. The purpose of multi−classification training is to distinguish specific damage cases in the
preset fault conditions quickly and to test the generalization ability of the model for other situations.

(1) Analysis of training results

The training results of the damage diagnosis experiment phase II are shown in Fig. 7 (a. the results when
training epoch is 30; b. the results when training epoch is 100). As seen from the figure, when training epoch
reaches 30, accuracy curves and Loss curves become smooth. The accuracy of the validation set and the
training set are both over 98%. However, at this time, the target function value (Loss) of the training set
is still considerable, the Loss of the validation set is about 0.05, and it has yet to reach the ideal value.
When the training epoch reaches 100, the Loss of the training set drops to around 0.05, which is half of
the value when the training epoch is 30; the Loss of the validation set fluctuates around 0.01, which is
one−fifth of the value when the training epoch is 30. In general, for 10 categories, the ETICNN model
has fast convergence speed and high accuracy, and can be used to achieve accurate diagnosis of damage
conditions.
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Figure 6: Pod at specific locations

Figure 7: Training results of locations 1−10
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(2) Confusion matrix analysis

The confusion matrix has been briefly introduced in previous section, and the analysis of the confusion
matrix has been carried out under the training epoch is equal to 3, 30, and 100, respectively, and the results
are shown in Fig. 8. It can be seen from the figure that the results are not ideal when the training epoch is 3. In
comparison, the accuracy can reach 98.8% when the training epoch is 30, and the accuracy reaches 99.7%
when the training epoch is 100, which shows that the accuracy and recall of the model have increased after
multiple training. In addition, from the confusion matrix, it can clearly distinguish which location of the
network model may have a deviation in the diagnosis results, and solving the deviation problem can
effectively help the optimization of the network model in the follow−up work.

(3) Test result analysis

The test process for damage diagnosis experiment phase II is to first save the weights of the trained
network model (training epoch = 100), then input the new test dataset that has not been involved in the
training into the saved model in a randomized order, and then view the final classification results through
the confusion matrix. The confusion matrix results of the test dataset are shown in Fig. 9. In the

Figure 8: Confusion matrix of train dataset
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experiment, locations 1−10 correspond to labels 0−9 in the figure, and the values of 10 cases are all 1.0.
According to the calculation of the data in the figure that the accuracy of ETICNN is 100% in the test
dataset and the recall is also 100%, this shows that ETICNN model has strong classification and
recognition ability.

5.3 Ablation Experiment
In order to study the effects of each part on the model, the experiment used the ETICNN (Normal),

ETICNN without Dropout (NO−Dropout), ETICNN without BN (NO−BN), and ETICNN without global
average pooling layer (NO−GAP) for comparison. Because the results of damage location diagnosis
experiment are single, so the damage diagnosis experiment phase II was selected as the object for
ablation experiment. In ablation experiment, the above four models were trained 10 epochs under the
same condition, and the results are shown in Fig. 10. As can be seen from the figure, when the ETICNN
model was used, the curves start to flatten after 3 epochs; the Loss of the validation set of NO−Dropout
model fluctuates greatly during the training process; the accuracy of the validation set of NO−BN model
increases slowly; the result of NO−GAP model is similar to that of NO−BN model. In addition, the
accuracy of different models was obtained according to the confusion matrix with 10 epochs of training.
The accuracy of different models and training parameters are shown in Table 2. It can be seen from the
table that the accuracy of the above four models is 99.3% (ETICNN model), 90.5% (NO−Dropout
model), 98.6% (NO−BN model) and 97.8% (NO−GAP model), respectively; the total parameters of the
above four models are 1059514, 1059514, 1054458 and 1083654. The above results show that
the improvement of the model in this paper is effective. It can not only improve the diagnosis accuracy of
the model, but also reduce the training parameters and improve the training speed of the model.

5.4 Comparative Experiment of Diagnosis Accuracy
In order to verify the superiority of the ETICNN model, under the same experimental conditions, a

comparative experimental study was carried out by using TICNN, WDCNN, and 1DCNN (the method
used by Abdeljaber et al. [57]). During the experiment, firstly, the structures at locations 1−10 were
damaged, and then the damage location of the bleacher were diagnosed by using the above four models.
The Pod and its average values of different models and locations are shown in Table 3, and the data in
Table 3 are plotted as shown in Fig. 11.

Figure 9: Confusion matrix of test dataset
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Figure 10: The results of ablation experiment

Table 2: The accuracy and params (parameters)

Conditions Accuracy Total params Trainable params NO−Trainable params

Normal 99.3% 1059514 1056986 2528

NO−Dropout 90.5% 1059514 1056986 2528

NO−BN 98.6% 1054458 1054458 0

NO−GAP 97.8% 1083654 1081126 2528

Table 3: Pod and its average values of different models and locations

Model Location

1 2 3 4 5 6 7 8 9 10 Average value

ETICNN 99.7 96.4 99.8 98 94.6 98.4 92.5 99.2 95.5 96.4 97.05

TICNN 94.4 96.7 98.7 93.2 90 96.8 95.2 94.5 96.6 92.6 94.86

WDCNN 92.2 90.7 96.9 91.5 92.2 92.2 90.8 92.3 93 89.1 92.07

1DCNN 88.2 87.8 93.6 88.6 87.2 90.8 78.4 85.2 88.4 79.2 86.73
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It can be seen from Table 3 and Fig. 11 that for 10 locations of damage diagnosis, when the ETICNN
model is used for diagnosis, the Pod of 8 locations is higher than 95%, and the average value of Pod is
97.05%. When the TICNN model is used for diagnosis, the Pod of only 5 locations is higher than 95%,
and the average value of Pod is 94.86%. When the WDCNN model is used for diagnosis, the Pod of
only 1 location is higher than 95%, and Pod of 1 location is lower than 90%, and the average value of
Pod is 92.07%. When the 1DCNN model is used for diagnosis, the Pod of 8 locations is lower than 90%,
and the average value is only 86.73%. In terms of the average value of Pod, the diagnosis accuracy of the
ETICNN model is 2.19% higher than those of the TICNN model, 4.98% higher than those of the
WDCNN model, and 10.32% higher than those of the 1DCNN model. Therefore, the diagnosis accuracy
of the ETICNN model is superior to TICNN, WDCNN, and 1DCNN.

5.5 Comparative Experiment of Anti−Noise Ability
In the comparative experiment of anti−noise ability, this paper took the data collected by the sensor

numbered 5 as the research object to carry out two−classification training, and compared the ETICNN
model with TICNN, WCNN and 1DCNN under the same experimental conditions. During the experiment,
the models were first used to train the data from both damaged and undamaged locations at location 5, and
the trained models were saved. Then, noise with different signal-to-noise ratios (SNR: −4 to 20 dB) was
added to the original signal, and the saved models were tested to obtain a confusion matrix. Finally, the
accuracy was calculated and compared based on the obtained confusion matrix. The definition of the SNR
is as follows:

SNR ¼ Signal

Noise
(9)

SNR represents the ratio between the original signal and noise signal. SNR can be expressed in decibels
(dB) as follows:

SNRdB ¼ 10lg P signal=P noiseð Þ (10)

where P_signal is the power of the original signal and P_noise is the power of the noise signal.

Comparison results of anti−noise capability are shown in Fig. 12. According to the results in Fig. 12, the
anti−noise capability of ETICNN is about 3%~4%more than that of TICNN, and the anti−noise capability of
TICNN is about 20%~28% more than that of WDCNN. In addition, it is noticed that the anti−noise ability of
ETICNN decreases by about 21%~25% when the Dropout does not follow the first convolutional layer.
When the BN layer is not added, the anti−noise ability of the ETICNN is closer to that of 1DCNN.
Therefore, the anti−noise ability of the ETICNN model is significantly higher than that of TICNN,

Figure 11: Comparison results of different models
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WDCNN, and 1DCNN; adding Dropout after the first convolutional layer can affect the anti−noise capability
of ETICNN, and adding BN layer also plays a significant role in improving the anti−noise capability of the
model.

6 Conclusions

In this paper, in order to improve the accuracy and anti−noise ability of damage diagnosis of the
bleacher, a novel ETICNN model was proposed on the basis of the improvement of the TICNN model.
Taking the bleacher simulator of Qatar University as the research object, the damage diagnosis
experiment phase I and II were carried out by using the ETICNN model. In order to verify the superiority
of the proposed model, comparison experiments were carried out by using TICNN, WDCNN, and
1DCNN under the same conditions. The conclusions of this paper are summarized as follows:

(1) When using the proposed ETICNN model in the damage diagnosis experiment phase I and II, the
accuracy can reach 100%. Therefore, the ETICNN model has high multi−classification accuracy and can
be used for high−precision damage diagnosis of the bleacher.

(2) When using the proposed ETICNN model in the comparative experiment of diagnosis accuracy, the
highest accuracy can reach 99%, and the average damage probability can reach 97.05%, which is higher than
that of TICNN, WDCNN, and 1DCNN. Therefore, the ETICNN model has high binary classification
accuracy and is superior to TICNN, WDCNN, and 1DCNN.

(3) In terms of anti−noise performance, the proposed ETICNN model is 3%~4% stronger than TICNN
and has strong anti−noise ability; it is suitable for high−precision failure diagnosis under noise environment.

Although the model proposed in this paper has achieved good results, its accuracy and anti−noise ability
need to be further improved. In the future, the ETICNN model will continue to be improved by adding
Inception module, SKNet module, and attention mechanism to obtain higher accuracy. In addition,
methods such as adaptive wavelet denoising and empirical wavelet transform can be added to the data
processing to improve anti−noise ability of the model.
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