JRMOpen Access

Journal of Renewable Materials

ISSN:2164-6325(print)
ISSN:2164-6341(online)
Publication Frequency:Monthly

  • Online
    Articles

    1250

  • on board
    editors

    95

Special Issues
Table of Content


About the Journal

The Journal of Renewable Materials (JRM) is an interdisciplinary journal publishing original research covering all aspects of renewable materials, namely bio-based materials, sustainable materials, green chemistry and including recycling and recovery of spent materials. The scope of the journal is devoted to reports of new and original experimental and theoretical research in the areas of materials, engineering, physics, bioscience, processing, environmental science and chemistry, which are related to renewable materials and their applications.

Indexing and Abstracting

Ei Compendex/Engineering Village (Elsevier); Scopus Citescore (Impact per Publication 2023): 4.1; Citescore Ranking: Environmental Science (miscellaneous): 55/163 (Q2); Materials Science (miscellaneous): 59/150 (Q2); SNIP (Source Normalized Impact per Paper 2023): 0.613; Google Scholar h5-index 31, ranking 5 in Wood Science &Technology; Chemical Abstracting Services; Polymer Library; Baidu Xueshu (China); Portico, etc...
Notice: Please make new submissions of JRM to the new system (ScholarOne) (https://mc03.manuscriptcentral.com/jrenewmater) from 25 September 2024. To view your previous submissions, please access TSP system (https://ijs.tspsubmission.com/homepage).

  • Open Access

    ARTICLE

    Fabrication and Mechanical, Dielectric and Optical Properties of Cellulose Paper Embedded with SrAl2O4:Eu,Dy Phosphor

    Journal of Renewable Materials, Vol.13, No.4, pp. 653-668, 2025, DOI:10.32604/jrm.2025.058211 - 21 April 2025
    Abstract The work deals with cellulose paper filled with nanocellulose and SrAl2O4:Eu,Dy oxide phosphor. It was found that both nanocellulose and oxide improve the tensile strength of the composites obtained. The samples with the oxide demonstrate a long-lasting photoluminescence (PL) under sunlight and ultra-violet (UV) illumination. Room-temperature the PL spectra reveal a wide multicomponent band spreading over all the visible spectral regions. The short-wavelength part of the band is ascribed to the cellulose-related luminescence, while the long-wavelength PL component with maxima near 540 nm corresponds to the luminescence of the SrAl2O4:Eu,Dy phosphor. The dependency of the PL… More >

    Graphic Abstract

    Fabrication and Mechanical, Dielectric and Optical Properties of Cellulose Paper Embedded with SrAl<sub>2</sub>O<sub>4</sub>:Eu,Dy Phosphor

  • Open Access

    ARTICLE

    Study on the Improvement of Foaming Properties of PBAT/PLA Composites by the Collaboration of Nano-Fe3O4 Carbon Nanotubes

    Journal of Renewable Materials, Vol.13, No.4, pp. 669-685, 2025, DOI:10.32604/jrm.2025.02025-0042 - 21 April 2025
    Abstract In recent years, degradable materials to replace petroleum-based materials in preparing high-performance foams have received much research attention. Degradable polymer foaming mostly uses supercritical fluids, especially carbon dioxide (Sc-CO2). The main reason is that the foams obtained by Sc-CO2 foaming have excellent performance, and the foaming agent is green and pollution-free. In current research, Poly (butylene adipate-co-terephthalate) (PBAT), poly (lactic acid) (PLA), and other degradable polymers are generally used as the main foaming materials, but the foaming performance of these degradable polyesters is poor and requires modification. In this work, 10% PLA was added to PBAT to… More >

    Graphic Abstract

    Study on the Improvement of Foaming Properties of PBAT/PLA Composites by the Collaboration of Nano-Fe<sub><b>3</b></sub>O<sub><b>4</b></sub> Carbon Nanotubes

  • Open Access

    ARTICLE

    New Rigid Furan Biofoams Based on Hydrolysable Chesnut (Castanea sativa) Tannin by Chemical Expansion

    Journal of Renewable Materials, Vol.13, No.4, pp. 687-697, 2025, DOI:10.32604/jrm.2025.058902 - 21 April 2025
    Abstract Tannins are polyphenols widely present in the plant kingdom, commonly divided into two groups: condensed and hydrolysable tannins. Sustainable furanic bio-foams based on condensed tannins have been largely studied, but little is described about the use of hydrolysable tannins for this material. This study examined the potential of hydrolysable chestnut tannin in comparison to condensed mimosa tannins to produce furanic foams by chemical expansion. Due to the low reactivity of the hydrolysable tannin, the use of an external source for its polymerization and curing was necessary. Through Fourier transform infrared spectroscopy (FTIR) chromatography, it was More >

    Graphic Abstract

    New Rigid Furan Biofoams Based on Hydrolysable Chesnut (<i>Castanea sativa</i>) Tannin by Chemical Expansion

  • Open Access

    REVIEW

    Research Progress of Nanotechnology on Efficient and Green Technologies for Wood Preservation: A Review

    Journal of Renewable Materials, Vol.13, No.4, pp. 699-718, 2025, DOI:10.32604/jrm.2025.058349 - 21 April 2025
    (This article belongs to the Special Issue: Modification and Functionalization of Wood)
    Abstract Wood, recognized as a renewable and environmentally sustainable material, plays a crucial role as an alternative energy resource within the construction industry. However, it is highly susceptible to mold and decay fungi, which can lead to surface discoloration and potentially compromise the structural integrity of wood. The advancement of nanotechnology has introduced innovative strategies for wood protection, enhancing its performance while imparting additional properties. Various approaches including nanosized metals, polymer nanocomposite and coating treatments are actively being explored in this field. Furthermore, integrating bio-based materials with nanotechnology offers a green and sustainable method for wood More >

  • Open Access

    ARTICLE

    Preliminary Study: Furfural Production from Oat Husks via Phosphorus-Containing Catalysts Catalyzed Hydrothermal Pretreatment in the Context of Biorefinery

    Journal of Renewable Materials, Vol.13, No.4, pp. 719-730, 2025, DOI:10.32604/jrm.2025.057944 - 21 April 2025
    (This article belongs to the Special Issue: Advances in Biorefinery Technologies and Products – 2024)
    Abstract Oat husks, a byproduct of oat milling operations with limited economic value, present a promising feedstock for biorefinery processes due to their chemical composition. This study investigates the conversion of C5 carbohydrates in oat husks into furfural through hydrothermal pretreatment using various phosphate-based catalysts, including H3PO4, NH4H2PO4, NaH2PO4, KH2PO4, K2HPO4 and K3PO4 as catalyst. The catalysts’ effectiveness in promoting furfural production was evaluated under identical hydrothermal conditions (treatment time for 60 min at a constant temperature of 170°C and a catalyst amount). Continuous water steam was used to strip furfural from the reaction zone and minimize its degradation.… More >

    Graphic Abstract

    Preliminary Study: Furfural Production from Oat Husks via Phosphorus-Containing Catalysts Catalyzed Hydrothermal Pretreatment in the Context of Biorefinery

  • Open Access

    ARTICLE

    Physical and Mechanical Properties of Gmelina Wood (Gmelina arborea Roxb.) Modified with Furfuryl Alcohol-Tannin

    Journal of Renewable Materials, Vol.13, No.4, pp. 731-752, 2025, DOI:10.32604/jrm.2024.057476 - 21 April 2025
    Abstract Furfurylation, a renowned chemical modification technique, uses furfuryl alcohol to enhance the properties of wood. This technology can be further refined by incorporating renewable tannins, which promote cross-linking with furfuryl alcohol. This study investigates the effects of furfurylation and tannin-modified furfurylation on the physical and mechanical properties of tropical Gmelina wood (Gmelina arborea Roxb.). Experiments involved impregnating Gmelina wood with aqueous solutions of furfuryl alcohol (FA) at 40% and 70% concentrations, as well as FA-tannin combinations (FA 40%-TA and FA 70%-TA), followed by polymerization at 103°C. The results demonstrated that both FA and FA-tannin treatments significantly… More >

    Graphic Abstract

    Physical and Mechanical Properties of Gmelina Wood (<i>Gmelina arborea</i> Roxb.) Modified with Furfuryl Alcohol-Tannin

  • Open Access

    ARTICLE

    Green Natural Rubber Foam and Enhanced Physical Properties from Sugarcane Bagasse Ash

    Journal of Renewable Materials, Vol.13, No.4, pp. 753-772, 2025, DOI:10.32604/jrm.2025.057590 - 21 April 2025
    Abstract Natural rubber (NR) foams are widely used. However, further studies are required for preparing eco-friendly NR foam and determining the optimum physical properties appropriate for application. This study aims to create an NR foam from rubber reinforced with sugarcane bagasse ash (SCBA) and sodium alginate. The results showed that the SCBA was primarily composed of silica or silicon dioxide (87.52% by weight) and carbon (11.41% by weight). This study investigated the influence of the amount of sodium alginate (0–5 phr) used in the NR foam formation. The addition of SCBA on the NR foam affected More >

    Graphic Abstract

    Green Natural Rubber Foam and Enhanced Physical Properties from Sugarcane Bagasse Ash

  • Open Access

    REVIEW

    Nanocellulose-Based Adhesives for Sustainable Wood-Polymer Composites: Recent Advancement and Future Perspective

    Journal of Renewable Materials, Vol.13, No.4, pp. 773-798, 2025, DOI:10.32604/jrm.2025.058359 - 21 April 2025
    Abstract Nanocellulose-based adhesives are gaining attention as a viable alternative to conventional adhesives, offering benefits such as cost-effectiveness and scalability, which make them suitable for various sectors, including cosmetics, pharmaceuticals, biodegradable products, and as reinforcing agents in natural adhesives. This review delves into the current advancements in nanocellulose-based adhesive solutions for sustainable and eco-friendly wood composites, using systematic review methods and bibliometric analysis. Data were collected from the Scopus database, spanning from 2007 to 2024, and visualized using VOSviewer to highlight emerging trends in the field. The analysis revealed that nanocellulose shows great potential as a More >

  • Open Access

    ARTICLE

    Two Different Methods of Impregnation of Fe3O4 Nanoparticles in Wood Composites of Three Tropical Species in Costa Rica

    Journal of Renewable Materials, Vol.13, No.4, pp. 799-816, 2025, DOI:10.32604/jrm.2025.058755 - 21 April 2025
    (This article belongs to the Special Issue: Modification and Functionalization of Wood)
    Abstract The impregnation of nanoparticles magnetified into wood had been developed by different methods, like surface chemical coprecipitation and vacuum-pressure coprecipitation of magnetic nanoparticles (NPs). However, there is a lack of information on the best method to coprecipitation NPs. Then, the present study has the objective to measure the effects of the impregnation process of wood veneers through two in situ processes (immersion and vacuum-pressure) using a solution of FeCl3·6H2O, FeCl2·4H2O and ammonia in three tropical species (Pinus oocarpa, Vochysia ferruginea and Vochysia guatemalensis). It was measured the degree of synthesis of iron NPs using weight and density gains, Fe+3 absorption, emission… More >

    Graphic Abstract

    Two Different Methods of Impregnation of Fe<sub>3</sub>O<sub>4</sub> Nanoparticles in Wood Composites of Three Tropical Species in Costa Rica

  • Open Access

    ARTICLE

    Enhancement of Mechanical Properties of Natural Rubber Filled Activated Carbon Materials from Agricultural Waste

    Journal of Renewable Materials, Vol.13, No.4, pp. 817-827, 2025, DOI:10.32604/jrm.2025.02024-0017 - 21 April 2025
    Abstract Herein, cure characteristics, morphology, and mechanical properties of natural rubber filled with activated carbon-based materials were investigated. Carbon-based materials were prepared from bagasse, coffee grounds and pineapple crowns by the pyrolysis method at temperatures in the range of 300°C. As-synthesized carbon materials were characterized by optical microscopy (OM), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) to analyze size distribution, morphology, and functional groups, respectively. OM and SEM analysis revealed that particles, flakes, and a small quantity of fiber-like carbon were obtained using bagasse and pineapple crown as raw materials, while honeycomb-like carbon materials… More >

    Graphic Abstract

    Enhancement of Mechanical Properties of Natural Rubber Filled Activated Carbon Materials from Agricultural Waste

Copyright © 2025 The Author(s). Published by Tech Science Press.

Share Link