Table of Content

Open AccessOpen Access


Scaled Boundary Finite Element Method for Thermoelasticity in Voided Materials

Jan Sladek1, Vladimir Sladek1, Peter Stanak1

Institute of Construction and Architecture, Slovak Academy of Sciences, 84503 Bratislava, Slovakia. Telephone/fax number: +421-54773548; E-mail:

Computer Modeling in Engineering & Sciences 2015, 106(4), 229-262.


The scaled boundary finite element method (SBFEM) is presented to study thermoelastic problems in materials with voids. The SBFEM combines the main advantages of the finite element method (FEM) and the boundary element method (BEM). In this method, only the boundary is discretized with elements leading to a reduction of spatial dimension by one. It reduces computational efforts in mesh generation and CPU. In contrast to the BEM, no fundamental solution is required, which permits to analyze general boundary value problems, where the conventional BEM cannot be applied due to missing fundamental solution. The computational homogenization technique is applied for thermo-mechanical analyses in voided materials. The evolution of the mechanical and thermal fields at the macroscopic level is resolved through the incorporation of the microstructural response. The microstructural analyses are performed on the representative volume element (RVE), where essential physical geometrical information about the microstructural components is included.


Cite This Article

Sladek, J., Sladek, V., Stanak, P. (2015). Scaled Boundary Finite Element Method for Thermoelasticity in Voided Materials. CMES-Computer Modeling in Engineering & Sciences, 106(4), 229–262.

This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1035


  • 858


  • 0


Related articles

Share Link