Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31,010)
  • Open Access

    ARTICLE

    Block-Wise Sliding Recursive Wavelet Transform and Its Application in Real-Time Vehicle-Induced Signal Separation

    Jie Li1, Nan An2,3, Youliang Ding2,3,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.072361 - 31 December 2025

    Abstract Vehicle-induced response separation is a crucial issue in structural health monitoring (SHM). This paper proposes a block-wise sliding recursive wavelet transform algorithm to meet the real-time processing requirements of monitoring data. To extend the separation target from a fixed dataset to a continuously updating data stream, a block-wise sliding framework is first developed. This framework is further optimized considering the characteristics of real-time data streams, and its advantage in computational efficiency is theoretically demonstrated. During the decomposition and reconstruction processes, information from neighboring data blocks is fully utilized to reduce algorithmic complexity. In addition, a… More >

  • Open Access

    ARTICLE

    A Novel Quantitative Detection of Sleeve Grouting Compactness Based on Ultrasonic Time-Frequency Dual-Domain Analysis

    Longqi Liao1, Jing Li2, Yuhua Li3, Yuemin Wang3, Jinhua Li1,*, Liyuan Cao4,*, Chunxiang Li4,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.072237 - 31 December 2025

    Abstract Quantitative detection of sleeve grouting compactness is a technical challenge in civil engineering testing. This study explores a novel quantitative detection method based on ultrasonic time-frequency dual-domain analysis. It establishes a mapping relationship between sleeve grouting compactness and characteristic parameters. First, this study made samples with gradient defects for two types of grouting sleeves, G18 and G20. These included four cases: 2D, 4D, 6D defects (where D is the diameter of the grouting sleeve), and no-defect. Then, an ultrasonic input/output data acquisition system was established. Three-dimensional sound field distribution data were obtained through an orthogonal… More >

  • Open Access

    ARTICLE

    A Temperature-Indexed Concrete Damage Plasticity Model Incorporating Bond-Slip Mechanism for Thermo-Mechanical Analysis of Reinforced Concrete Structures

    Wu Feng1,2,*, Tengku Anita Raja Hussin1, Xu Yang3

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071664 - 31 December 2025

    Abstract This study investigates the thermo–mechanical behavior of C40 concrete and reinforced concrete subjected to elevated temperatures up to 700°C by integrating experimental testing and advanced numerical modeling. A temperature-indexed Concrete Damage Plasticity (CDP) framework incorporating bond–slip effects was developed in Abaqus to capture both global stress–strain responses and localized damage evolution. Uniaxial compression tests on thermally exposed cylinders provided residual strength data and failure observations for model calibration and validation. Results demonstrated a distinct two-stage degradation regime: moderate stiffness and strength reduction up to ~400°C, followed by sharp deterioration beyond 500°C–600°C, with residual capacity at… More >

  • Open Access

    ARTICLE

    Diffusion-Driven Generation of Synthetic Complex Concrete Crack Images for Segmentation Tasks

    Pengwei Guo1, Xiao Tan2,3,*, Yiming Liu4

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071317 - 31 December 2025

    Abstract Crack detection accuracy in computer vision is often constrained by limited annotated datasets. Although Generative Adversarial Networks (GANs) have been applied for data augmentation, they frequently introduce blurs and artifacts. To address this challenge, this study leverages Denoising Diffusion Probabilistic Models (DDPMs) to generate high-quality synthetic crack images, enriching the training set with diverse and structurally consistent samples that enhance the crack segmentation. The proposed framework involves a two-stage pipeline: first, DDPMs are used to synthesize high-fidelity crack images that capture fine structural details. Second, these generated samples are combined with real data to train… More >

  • Open Access

    ARTICLE

    GPR Image Enhancement and Object Detection-Based Identification for Roadbed Subsurface Defect

    Zhuangqiang Wen1, Min Zhang2, Zhekun Shou3,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071300 - 31 December 2025

    Abstract Roadbed disease detection is essential for maintaining road functionality. Ground penetrating radar (GPR) enables non-destructive detection without drilling. However, current identification often relies on manual inspection, which requires extensive experience, suffers from low efficiency, and is highly subjective. As the results are presented as radar images, image processing methods can be applied for fast and objective identification. Deep learning-based approaches now offer a robust solution for automated roadbed disease detection. This study proposes an enhanced Faster Region-based Convolutional Neural Networks (R-CNN) framework integrating ResNet-50 as the backbone and two-dimensional discrete Fourier spectrum transformation (2D-DFT) for… More >

  • Open Access

    ARTICLE

    Suppression of Dry-Coupled Rubber Layer Interference in Ultrasonic Thickness Measurement: A Comparative Study of Empirical Mode Decomposition Variants

    Weichen Wang1, Shaofeng Wang1, Wenjing Liu1,*, Luncai Zhou2, Erqing Zhang1, Ting Gao3, Grigory Petrishin4

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071278 - 31 December 2025

    Abstract In dry-coupled ultrasonic thickness measurement, thick rubber layers introduce high-amplitude parasitic echoes that obscure defect signals and degrade thickness accuracy. Existing methods struggle to resolve overlap-ping echoes under variable coupling conditions and non-stationary noise. This study proposes a novel dual-criterion framework integrating energy contribution and statistical impulsivity metrics to isolate specimen re-flections from coupling-layer interference. By decomposing A-scan signals into Intrinsic Mode Functions (IMFs), the framework employs energy contribution thresholds (>85%) and kurtosis indices (>3) to autonomously select IMFs containing valid specimen echoes. Hybrid time-frequency thresholding further suppresses interference through amplitude filtering and spectral focusing. More >

  • Open Access

    ARTICLE

    Ultrasonic Defect Localization Correction Method under the Influence of Non-Uniform Temperature Field

    Jianhua Du1, Shaofeng Wang1, Ting Gao2, Huiwen Sun2, Wenjing Liu1,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071189 - 31 December 2025

    Abstract In ultrasonic non-destructive testing of high-temperature industrial equipment, sound velocity drift induced by non-uniform temperature fields can severely compromise defect localization accuracy. Conventional approaches that rely on room-temperature sound velocities introduce systematic errors, potentially leading to misjudgment of safety-critical components. Two primary challenges hinder current methods: first, it is difficult to monitor real-time changes in sound velocity distribution within a thermal gradient; second, traditional uniform-temperature correction models fail to capture the nonlinear dependence of material properties on temperature and their effect on ultrasonic velocity fields. Here, we propose a defect localization correction method based on… More >

  • Open Access

    ARTICLE

    Revisiting Nonlinear Modelling Approaches for Existing RC Structures: Lumped vs. Distributed Plasticity

    Hüseyin Bilgin*, Bredli Plaku

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071007 - 31 December 2025

    Abstract Nonlinear static procedures are widely adopted in structural engineering practice for seismic performance assessment due to their simplicity and computational efficiency. However, their reliability depends heavily on how the nonlinear behaviour of structural components is represented. The recent earthquakes in Albania (2019) and Türkiye (2023) have underscored the need for accurate assessment techniques, particularly for older reinforced concrete buildings with poor detailing. This study quantifies the discrepancies between default and user-defined component modelling in pushover analysis of pre-modern reinforced concrete structures, analysing two representative low- and mid-rise reinforced concrete frame buildings. The lumped plasticity approach… More > Graphic Abstract

    Revisiting Nonlinear Modelling Approaches for Existing RC Structures: Lumped vs. Distributed Plasticity

  • Open Access

    ARTICLE

    BIM-Based Visualization System for Settlement Warning in Multi-Purpose Utility Tunnels (MUTs)

    Ping Wu1, Jie Zou2, Wangxin Li1,*, Yidong Xu1

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070873 - 31 December 2025

    Abstract The existing 2D settlement monitoring systems for utility tunnels are heavily reliant on manual interpretation of deformation data and empirical prediction models. Consequently, early anomalies (e.g., minor cracks) are often misjudged, and warnings lag by about 24 h without automated spatial localization. This study establishes a technical framework for requirements analysis, architectural design, and data-integration protocols. Revit parametric modelling is used to build a 3D tunnel model with structural elements, pipelines and 18 monitoring points (for displacement and joint width). Custom Revit API code integrated real-time sensor data into the BIM platform via an automated… More >

  • Open Access

    ARTICLE

    Optimized Industrial Surface Defect Detection Based on Improved YOLOv11

    Hua-Qin Wu1,2, Hao Yan1,2, Hong Zhang1,2,*, Shun-Wu Xu1,2, Feng-Yu Gao1,2, Zhao-Wen Chen1,2

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070589 - 31 December 2025

    Abstract In industrial manufacturing, efficient surface defect detection is crucial for ensuring product quality and production safety. Traditional inspection methods are often slow, subjective, and prone to errors, while classical machine vision techniques struggle with complex backgrounds and small defects. To address these challenges, this study proposes an improved YOLOv11 model for detecting defects on hot-rolled steel strips using the NEU-DET dataset. Three key improvements are introduced in the proposed model. First, a lightweight Guided Attention Feature Module (GAFM) is incorporated to enhance multi-scale feature fusion, allowing the model to better capture and integrate semantic and… More >

Displaying 1-10 on page 1 of 31010. Per Page