Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23,305)
  • Open Access

    ARTICLE

    Physical-Rheological Properties and Performances of Rejuvenated (Styrene-Butadiene-Styrene) Asphalt with Polymerized-MDI and Aromatic Oil

    Ao Lu1, Ming Xiong1, Chen Chen1, Liangjiang Li1, Haibei Tan1, Xiong Xu2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1633-1646, 2024, DOI:10.32604/fdmp.2024.051010

    Abstract Traditional asphalt rejuvenators, like aromatic oil (AO), are known to be effective in improving the low-temperature properties and fatigue performances of aged SBS (styrene-butadiene-styrene) modified asphalt (SBSMA) binders and mixtures. However, these rejuvenators inevitably compromise their high-temperature properties and deformation resistances because they dilute asphalt binder but do not fix the damaged structures of aged SBS. In this study, a highly-active chemical called polymerized 4,4-diphenylmethane diisocyanate (PMDI) was used to assist the traditional AO asphalt rejuvenator. The physical and rheological characteristics of rejuvenated SBSMA binders and the moisture-induced damage and rut deformation performances of corresponding… More > Graphic Abstract

    Physical-Rheological Properties and Performances of Rejuvenated (Styrene-Butadiene-Styrene) Asphalt with Polymerized-MDI and Aromatic Oil

  • Open Access

    ARTICLE

    Experimental Study of Liquid Metal Flow for the Development of a Contact-Less Control Technique

    Aleksandr Poluyanov*, Ilya Kolesnichenko

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1553-1563, 2024, DOI:10.32604/fdmp.2024.050165

    Abstract The article presents an experimental study on the flow of an eutectic gallium alloy in a cylindrical cell, which is placed in an alternating magnetic field. The magnetic field is generated by a coil connected to an alternating current source. The coil is located at a fixed height in such a way that its plane is perpendicular to the gravity vector, which in turn is parallel to the axis of the cylinder. The position of the cylinder can vary in height with respect to the coil. The forced flow of the considered electrically conductive liquid… More > Graphic Abstract

    Experimental Study of Liquid Metal Flow for the Development of a Contact-Less Control Technique

  • Open Access

    ARTICLE

    Exploring Capillary Fringe Flow: Quasilinear Modeling with Kirchhoff Transforms and Gardner Model

    Rachid Karra1,*, Abdelatif Maslouhi2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1611-1631, 2024, DOI:10.32604/fdmp.2024.048447

    Abstract Recent studies have underscored the significance of the capillary fringe in hydrological and biochemical processes. Moreover, its role in shallow waters is expected to be considerable. Traditionally, the study of groundwater flow has centered on unsaturated-saturated zones, often overlooking the impact of the capillary fringe. In this study, we introduce a steady-state two-dimensional model that integrates the capillary fringe into a 2-D numerical solution. Our novel approach employs the potential form of the Richards equation, facilitating the determination of boundaries, pressures, and velocities across different ground surface zones. We utilized a two-dimensional Freefem++ finite element model… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Thermocapillary Convection with Evaporation Induced by Boundary Heating

    O. N. Goncharova1, V. B. Bekezhanova2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1667-1686, 2024, DOI:10.32604/fdmp.2024.047959

    Abstract The dynamics of a bilayer system filling a rectangular cuvette subjected to external heating is studied. The influence of two types of thermal exposure on the flow pattern and on the dynamic contact angle is analyzed. In particular, the cases of local heating from below and distributed thermal load from the lateral walls are considered. The simulation is carried out within the frame of a two-sided evaporative convection model based on the Boussinesq approximation. A benzine–air system is considered as reference system. The variation in time of the contact angle is described for both heating More > Graphic Abstract

    Numerical Simulation of Thermocapillary Convection with Evaporation Induced by Boundary Heating

  • Open Access

    ARTICLE

    Numerical Analysis of Permeability of Functionally Graded Scaffolds

    Dmitry Bratsun*, Natalia Elenskaya, Ramil Siraev, Mikhail Tashkinov

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1463-1479, 2024, DOI:10.32604/fdmp.2024.047928

    Abstract In this work, we numerically study the hydrodynamic permeability of new-generation artificial porous materials used as scaffolds for cell growth in a perfusion bioreactor. We consider two popular solid matrix designs based on triply periodic minimal surfaces, the Schwarz P (primitive) and D (diamond) surfaces, which enable the creation of materials with controlled porosity gradients. The latter property is crucial for regulating the shear stress field in the pores of the scaffold, which makes it possible to control the intensity of cell growth. The permeability of functionally graded materials is studied within the framework of… More > Graphic Abstract

    Numerical Analysis of Permeability of Functionally Graded Scaffolds

  • Open Access

    ARTICLE

    Numerical Simulation of Oil-Water Two-Phase Flow in Low Permeability Tight Reservoirs Based on Weighted Least Squares Meshless Method

    Xin Liu1,*, Kai Yan2, Bo Fang3, Xiaoyu Sun3, Daqiang Feng4, Li Yin5

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1539-1552, 2024, DOI:10.32604/fdmp.2024.047922

    Abstract In response to the complex characteristics of actual low-permeability tight reservoirs, this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs, considering complex boundary shapes. Utilizing radial basis function point interpolation, the method approximates shape functions for unknown functions within the nodal influence domain. The shape functions constructed by the aforementioned meshless interpolation method have δ-function properties, which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells. Moreover, the meshless method offers greater flexibility and freedom compared to grid cell discretization, making it simpler… More >

  • Open Access

    ARTICLE

    Study of a Hydraulic Jump in an Asymmetric Trapezoidal Channel with Different Sluice Gates

    Bouthaina Debabeche1,2,*, Sonia Cherhabil3

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1499-1516, 2024, DOI:10.32604/fdmp.2024.047403

    Abstract In this study, the main properties of the hydraulic jump in an asymmetric trapezoidal flume are analyzed experimentally, including the so-called sequent depths, characteristic lengths, and efficiency. In particular, an asymmetric trapezoidal flume with a length of 7 m and a width of 0.304 m is considered, with the bottom of the flume transversely inclined at an angle of m = 0.296 and vertical lateral sides. The corresponding inflow Froude number is allowed to range in the interval (1.40 < F1 < 6.11). The properties of this jump are compared to those of hydraulic jumps More >

  • Open Access

    ARTICLE

    Analysis of Snow Distribution and Displacement in the Bogie Region of a High-Speed Train

    Zhihui Du1, Mengge Yu1,*, Jiali Liu2, Xiulong Yao1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1687-1701, 2024, DOI:10.32604/fdmp.2024.047315

    Abstract Snow interacting with a high-speed train can cause the formation of ice in the train bogie region and affect its safety. In this study, a wind-snow multiphase numerical approach is introduced for high-speed train bogies on the basis of the Euler-Lagrange discrete phase model. A particle-wall impact criterion is implemented to account for the presence of snow particles on the surface. Subsequently, numerical simulations are conducted, considering various snow particle diameter distributions and densities. The research results indicate that when the particle diameter is relatively small, the distribution of snow particles in the bogie cavity More >

  • Open Access

    ARTICLE

    A Gasification Technology to Combine Oil Sludge with Coal–Water Slurry: CFD Analysis and Performance Determination

    Xulei Wu1, Hailong Yu1,*, Panrong Wu1, Chaoqian Wang1, Haiqun Chen1, Yunlan Sun1, He Zheng2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1481-1498, 2024, DOI:10.32604/fdmp.2024.047092

    Abstract The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic. In this context, gasification technologies are generally seen as a promising way to combine oil sludge with coal–water slurry (CWS) and generate resourceful fuel. In this study, a novel five-nozzle gasifier reactor was analyzed by means of a CFD (Computational fluid dynamic) method. Among several influential factors, special attention was paid to the height-to-diameter ratio of the gasifier and the mixing ratio of oil sludge, which are known to have a significant impact on the flow field, More >

  • Open Access

    ARTICLE

    Study on the Relationship between Structural Aspects and Aerodynamic Characteristics of Archimedes Spiral Wind Turbines

    Yuanjun Dai1,2,3,*, Zetao Deng1, Baohua Li2, Lei Zhong1, Jianping Wang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.7, pp. 1517-1537, 2024, DOI:10.32604/fdmp.2024.046828

    Abstract A combined experimental and numerical research study is conducted to investigate the complex relationship between the structure and the aerodynamic performances of an Archimedes spiral wind turbine (ASWT). Two ASWTs are considered, a prototypical version and an improved version. It is shown that the latter achieves the best aerodynamic performance when the spread angles at the three sets of blades are α = 30°, α = 55°, α = 60°, respectively and the blade thickness is 4 mm. For a velocity V = 10 m/s, a tip speed ratio (TSR) = 1.58 and 2, the maximum C values More > Graphic Abstract

    Study on the Relationship between Structural Aspects and Aerodynamic Characteristics of Archimedes Spiral Wind Turbines

Displaying 11-20 on page 2 of 23305. Per Page