Table of Content

Open Access iconOpen Access

ARTICLE

Hybrid Adaptive Particle Swarm Optimized Particle Filter for Integrated Navigation System

Zhimin Chen1,2, Yuanxin Qu1, Tongshuang Zhang1, Xiaoshu Bai1, Xiaohong Tao1, Yong Liu1

China Satellite Maritime Tracking and Controlling Department, Jiangyin, 214431, China.
Corresponding author. E-mail: chenzhimin@188.com

Computer Modeling in Engineering & Sciences 2015, 106(6), 379-393. https://doi.org/10.3970/cmes.2015.106.379

Abstract

Particle swarm optimization algorithm based particle filter is trapping in local optimum easily, it is not able to satisfy the requirement of modern integrated navigation system. In order to solve the problem, A novel particle filter algorithm based on hybrid adaptive particle swarm optimization(HPSO-PF) is presented in this paper. This improved particle filter will conduce to finding the ideal solution domain by making use of the global convergence of artificial fish swarm and enhancement of fusion precision by guiding particles to move toward the high likelihood area through particle swarm optimization. Finally different models are used for simulation and the experiment results show that this new particle filter improves the precision of integrated navigation system.

Keywords


Cite This Article

APA Style
Chen, Z., Qu, Y., Zhang, T., Bai, X., Tao, X. et al. (2015). Hybrid adaptive particle swarm optimized particle filter for integrated navigation system. Computer Modeling in Engineering & Sciences, 106(6), 379-393. https://doi.org/10.3970/cmes.2015.106.379
Vancouver Style
Chen Z, Qu Y, Zhang T, Bai X, Tao X, Liu Y. Hybrid adaptive particle swarm optimized particle filter for integrated navigation system. Comput Model Eng Sci. 2015;106(6):379-393 https://doi.org/10.3970/cmes.2015.106.379
IEEE Style
Z. Chen, Y. Qu, T. Zhang, X. Bai, X. Tao, and Y. Liu "Hybrid Adaptive Particle Swarm Optimized Particle Filter for Integrated Navigation System," Comput. Model. Eng. Sci., vol. 106, no. 6, pp. 379-393. 2015. https://doi.org/10.3970/cmes.2015.106.379



cc This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1127

    View

  • 786

    Download

  • 0

    Like

Share Link