Table of Content

Open Access iconOpen Access

ARTICLE

crossmark

Recommender System Combining Popularity and Novelty Based on One-Mode Projection of Weighted Bipartite Network

Yong Yu1, Yongjun Luo1, Tong Li2, Shudong Li3, *, Xiaobo Wu4, Jinzhuo Liu1, *, Yu Jiang3, *

1 School of Software, Key Laboratory in Software Engineering of Yunnan Province, Yunnan University, Kunming, 650091, China.
2 School of Big Data, Yunnan Agricultural University, Kunming, 650201, China.
3 Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006, China.
4 School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou, 510006, China.

* Corresponding Author: Jinzhuo Liu. Email: email; email.

Computers, Materials & Continua 2020, 63(1), 489-507. https://doi.org/10.32604/cmc.2020.07616

Abstract

Personalized recommendation algorithms, which are effective means to solve information overload, are popular topics in current research. In this paper, a recommender system combining popularity and novelty (RSCPN) based on one-mode projection of weighted bipartite network is proposed. The edge between a user and item is weighted with the item’s rating, and we consider the difference in the ratings of different users for an item to obtain a reasonable method of measuring the similarity between users. RSCPN can be used in the same model for popularity and novelty recommendation by setting different parameter values and analyzing how a change in parameters affects the popularity and novelty of the recommender system. We verify and compare the accuracy, diversity and novelty of the proposed model with those of other models, and results show that RSCPN is feasible.

Keywords


Cite This Article

Y. Yu, Y. Luo, T. Li, S. Li, X. Wu et al., "Recommender system combining popularity and novelty based on one-mode projection of weighted bipartite network," Computers, Materials & Continua, vol. 63, no.1, pp. 489–507, 2020. https://doi.org/10.32604/cmc.2020.07616



cc This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 3515

    View

  • 2197

    Download

  • 0

    Like

Share Link