Table of Content

Open Access iconOpen Access

ARTICLE

crossmark

An Approach for Radar Quantitative Precipitation Estimation Based on Spatiotemporal Network

Shengchun Wang1, Xiaozhong Yu1, Lianye Liu2, Jingui Huang1, *, Tsz Ho Wong3, Chengcheng Jiang1

1 School of Information Science and Engineering, Hunan Normal University, Changsha, 410081, China.
2 Hunan Meteorological Observatory, Changsha, 410118, China.
3 Blackmagic Design, Rowville, VIC 3178, Australia.

* Corresponding Author: Jingui Huang. Email: email.

Computers, Materials & Continua 2020, 65(1), 459-479. https://doi.org/10.32604/cmc.2020.010627

Abstract

Radar quantitative precipitation estimation (QPE) is a key and challenging task for many designs and applications with meteorological purposes. Since the Z-R relation between radar and rain has a number of parameters on different areas, and the rainfall varies with seasons, the traditional methods are incapable of achieving high spatial and temporal resolution and thus difficult to obtain a refined rainfall estimation. This paper proposes a radar quantitative precipitation estimation algorithm based on the spatiotemporal network model (ST-QPE), which designs a convolutional time-series network QPE-Net8 and a multi-scale feature fusion time-series network QPE-Net22 to address these limitations. We report on our investigation into contrast reversal experiments with radar echo and rainfall data collected by the Hunan Meteorological Observatory. Experimental results are verified and analyzed by using statistical and meteorological methods, and show that the ST-QPE model can inverse the rainfall information corresponding to the radar echo at a given moment, which provides practical guidance for accurate short-range precipitation nowcasting to prevent and mitigate disasters efficiently.

Keywords


Cite This Article

APA Style
Wang, S., Yu, X., Liu, L., Huang, J., Wong, T.H. et al. (2020). An approach for radar quantitative precipitation estimation based on spatiotemporal network. Computers, Materials & Continua, 65(1), 459-479. https://doi.org/10.32604/cmc.2020.010627
Vancouver Style
Wang S, Yu X, Liu L, Huang J, Wong TH, Jiang C. An approach for radar quantitative precipitation estimation based on spatiotemporal network. Comput Mater Contin. 2020;65(1):459-479 https://doi.org/10.32604/cmc.2020.010627
IEEE Style
S. Wang, X. Yu, L. Liu, J. Huang, T.H. Wong, and C. Jiang, “An Approach for Radar Quantitative Precipitation Estimation Based on Spatiotemporal Network,” Comput. Mater. Contin., vol. 65, no. 1, pp. 459-479, 2020. https://doi.org/10.32604/cmc.2020.010627

Citations




cc Copyright © 2020 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2564

    View

  • 2180

    Download

  • 0

    Like

Share Link