Open Access iconOpen Access

ARTICLE

crossmark

Security Analysis in Smart Agriculture: Insights from a Cyber-Physical System Application

Ahmed Redha Mahlous*

College of Computer and Information Sciences, Prince Sultan University, Riyadh, 11586, Saudia Arabia

* Corresponding Author: Ahmed Redha Mahlous. Email: email

Computers, Materials & Continua 2024, 79(3), 4781-4803. https://doi.org/10.32604/cmc.2024.050821

Abstract

Smart agriculture modifies traditional farming practices, and offers innovative approaches to boost production and sustainability by leveraging contemporary technologies. In today’s world where technology is everything, these technologies are utilized to streamline regular tasks and procedures in agriculture, one of the largest and most significant industries in every nation. This research paper stands out from existing literature on smart agriculture security by providing a comprehensive analysis and examination of security issues within smart agriculture systems. Divided into three main sections—security analysis, system architecture and design and risk assessment of Cyber-Physical Systems (CPS) applications—the study delves into various elements crucial for smart farming, such as data sources, infrastructure components, communication protocols, and the roles of different stakeholders such as farmers, agricultural scientists and researchers, technology providers, government agencies, consumers and many others. In contrast to earlier research, this work analyzes the resilience of smart agriculture systems using approaches such as threat modeling, penetration testing, and vulnerability assessments. Important discoveries highlight the concerns connected to unsecured communication protocols, possible threats from malevolent actors, and vulnerabilities in IoT devices. Furthermore, the study suggests enhancements for CPS applications, such as strong access controls, intrusion detection systems, and encryption protocols. In addition, risk assessment techniques are applied to prioritize mitigation tactics and detect potential hazards, addressing issues like data breaches, system outages, and automated farming process sabotage. The research sets itself apart even more by presenting a prototype CPS application that makes use of a digital temperature sensor. This application was first created using a Tinkercad simulator and then using actual hardware with Arduino boards. The CPS application’s defenses against potential threats and vulnerabilities are strengthened by this integrated approach, which distinguishes this research for its depth and usefulness in the field of smart agriculture security.

Keywords


Cite This Article

APA Style
Mahlous, A.R. (2024). Security analysis in smart agriculture: insights from a cyber-physical system application. Computers, Materials & Continua, 79(3), 4781-4803. https://doi.org/10.32604/cmc.2024.050821
Vancouver Style
Mahlous AR. Security analysis in smart agriculture: insights from a cyber-physical system application. Comput Mater Contin. 2024;79(3):4781-4803 https://doi.org/10.32604/cmc.2024.050821
IEEE Style
A.R. Mahlous, “Security Analysis in Smart Agriculture: Insights from a Cyber-Physical System Application,” Comput. Mater. Contin., vol. 79, no. 3, pp. 4781-4803, 2024. https://doi.org/10.32604/cmc.2024.050821



cc Copyright © 2024 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 468

    View

  • 219

    Download

  • 0

    Like

Share Link