Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,799)
  • Open Access

    ARTICLE

    A Differential Reproducing Kernel Particle Method for the Analysis of Multilayered Elastic and Piezoelectric Plates

    Chih-Ping Wu1, Kuan-Hao Chiu, Yun-Ming Wang

    CMES-Computer Modeling in Engineering & Sciences, Vol.27, No.3, pp. 163-186, 2008, DOI:10.3970/cmes.2008.027.163

    Abstract A differential reproducing kernel particle (DRKP) method is proposed and developed for the analysis of simply supported, multilayered elastic and piezoelectric plates by following up the consistent concepts of reproducing kernel particle (RKP) method. Unlike the RKP method in which the shape functions for derivatives of the reproducing kernel (RK) approximants are obtained by directly taking the differentiation with respect to the shape functions of the RK approximants, we construct a set of differential reproducing conditions to determine the shape functions for the derivatives of RK approximants. On the basis of the extended Hellinger-Reissner principle, More >

  • Open Access

    ARTICLE

    Particular Solutions of Chebyshev Polynomials for Polyharmonic and Poly-Helmholtz Equations

    Chia-Cheng Tsai1

    CMES-Computer Modeling in Engineering & Sciences, Vol.27, No.3, pp. 151-162, 2008, DOI:10.3970/cmes.2008.027.151

    Abstract In this paper we develop analytical particular solutions for the polyharmonic and the products of Helmholtz-type partial differential operators with Chebyshev polynomials at right-hand side. Our solutions can be written explicitly in terms of either monomial or Chebyshev bases. By using these formulas, we can obtain the approximate particular solution when the right-hand side has been represented by a truncated series of Chebyshev polynomials. These formulas are further implemented to solve inhomogeneous partial differential equations (PDEs) in which the homogeneous solutions are complementarily solved by the method of fundamental solutions (MFS). Numerical experiments, which include More >

  • Open Access

    ARTICLE

    A Lie-Group Shooting Method for Simultaneously Estimating the Time-Dependent Damping and Stiffness Coefficients

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.27, No.3, pp. 137-150, 2008, DOI:10.3970/cmes.2008.027.137

    Abstract For the inverse vibration problem, a Lie-group shooting method is proposed to simultaneously estimate the time-dependent damping and stiffness functions by using two sets of displacement as inputs. First, we transform these two ODEs into two parabolic type PDEs. Second, we formulate the inverse vibration problem as a multi-dimensional two-point boundary value problem with unknown coefficients, allowing us to develop the Lie-group shooting method. For the semi-discretizations of PDEs we thus obtain two coupled sets of linear algebraic equations, from which the estimation of damping and stiffness coefficients can be written out explicitly. The present More >

  • Open Access

    ARTICLE

    Wave Characteristics of Multi-Walled Carbon Nanotubes

    Mira Mitra1, S. Gopalakrishnan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.27, No.1&2, pp. 125-136, 2008, DOI:10.3970/cmes.2008.027.125

    Abstract In this paper, the wave characteristics, namely, the spectrum and dispersion relations of multi-wall carbon nanotubes (MWNTs) are studied. The MWNTs are modeled as multiple thin shells coupled through van der Waals force. Each wall of the MWNT has three displacements, i.e, axial, circumferential and radial with variation along the axial and circumferential directions. The wave characteristics are obtained by transforming the governing differential wave equations to frequency domain via Fourier transform. This transformation is first done in time using fast Fourier transform (FFT) and then in one spatial dimension using Fourier series. These transformed equations More >

  • Open Access

    ARTICLE

    A Micromechanical Model for Polycrystal Ferroelectrics with Grain Boundary Effects

    K. Jayabal, A. Arockiarajan, S.M. Sivakumar1

    CMES-Computer Modeling in Engineering & Sciences, Vol.27, No.1&2, pp. 111-124, 2008, DOI:10.3970/cmes.2008.027.111

    Abstract A three dimensional micromechanically motivated model is proposed here based on firm thermodynamics principles to capture the nonlinear dissipative effects in the polycrystal ferroelectrics. The constraint imposed by the surrounding grains on a subgrain at its boundary during domain switching is modeled by a suitable modification of the switching threshold in a subgrain. The effect of this modification in the dissipation threshold is studied in the polycrystal behavior after due correlation of the subgrain behavior with the single crystal experimental results found in literature. Taking into consideration, all the domain switching possibilities, the volume fractions More >

  • Open Access

    ARTICLE

    Time Variant Reliability Analysis of Nonlinear Structural Dynamical Systems using combined Monte Carlo Simulations and Asymptotic Extreme Value Theory

    B Radhika1, S S P,a1, C S Manohar1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.27, No.1&2, pp. 79-110, 2008, DOI:10.3970/cmes.2008.027.079

    Abstract Reliability of nonlinear vibrating systems under stochastic excitations is investigated using a two-stage Monte Carlo simulation strategy. For systems with white noise excitation, the governing equations of motion are interpreted as a set of Ito stochastic differential equations. It is assumed that the probability distribution of the maximum in the steady state response belongs to the basin of attraction of one of the classical asymptotic extreme value distributions. The first stage of the solution strategy consists of selection of the form of the extreme value distribution based on hypothesis tests, and the next stage involves More >

  • Open Access

    ARTICLE

    Linear Stability Analysis of Time-Averaged Flow Past a Cylinder

    Sanjay Mittal1

    CMES-Computer Modeling in Engineering & Sciences, Vol.27, No.1&2, pp. 63-78, 2008, DOI:10.3970/cmes.2008.027.063

    Abstract Flow past a circular cylinder looses stability at a Reynolds number,Re~47. It has been shown, in the past, that the linear stability analysis (LSA) of the steady state solution can predict not only the critical Re, but also the non-dimensional frequency, St, of the associated instability. For larger Re the non-linear effects become important and the LSA of the steady-state flow does not predict the correct St. It is shown that, in general, the LSA applied to the time-averaged flow can result in useful information regarding its stability. This idea is applied to the Re = 100 flow past More >

  • Open Access

    ARTICLE

    Vibration and Control of Rotating Tapered Thin-Walled Composite Beam Using Macro Fiber Composite Actuator

    Vadiraja D. N.1, A. D. Sahasrabudhe2

    CMES-Computer Modeling in Engineering & Sciences, Vol.27, No.1&2, pp. 49-62, 2008, DOI:10.3970/cmes.2008.027.049

    Abstract Rotating beams are flexible structures, which are often idealized as cantilever beams. Structural modelling of rotating thin-walled composite beam with embedded MFC actuators and sensors using higher shear deformation theory (HSDT) is presented. A non-Cartesian deformation variable (which represents arc length stretch) is used along with two Cartesian deformation variables. The governing system of equations is derived from Hamilton's principle and solution is obtained by extended Galerkin's method. Optimal control problem is solved using LQG control algorithm. Vibration characteristics and optimal control for a box beam configuration are discussed in numerical examples. Gyroscopic coupling between More >

  • Open Access

    ARTICLE

    Plane Wave Analysis of Panel Wedges

    T. Kar, M.L. Munjal1

    CMES-Computer Modeling in Engineering & Sciences, Vol.27, No.1&2, pp. 37-48, 2008, DOI:10.3970/cmes.2008.027.037

    Abstract In the present work, a wedge structure made of absorbing panels has been analyzed by making use of the matrizant analysis with the help of the Boundary-Condition-Transfer (BCT) algorithm. The rectangular panel wedge, as it is called in this manuscript, is simple in geometry. The theoretical model, based on the plane wave acoustical coupling between multiple interacting ducts of variable cross sectional area, is applied to predict the pressure reflection coefficient of the present wedge configuration. Bulk reaction and hence wave propagation in the wedge material has been assumed in the proposed model. An asymptotic More >

  • Open Access

    ARTICLE

    Modeling Helicopter Rotor Blade Flapping Motion Considering Nonlinear Aerodynamics

    Jyoti Ranjan Majhi, Ranjan Ganguli1

    CMES-Computer Modeling in Engineering & Sciences, Vol.27, No.1&2, pp. 25-36, 2008, DOI:10.3970/cmes.2008.027.025

    Abstract The flapping equation for a rotating rigid helicopter blade is typically derived by considering 1) small flap angle, 2) small induced angle of attack and 3) linear aerodynamics. However, the use of nonlinear aerodynamics can make the assumptions of small angles suspect. A general equation describing helicopter blade flap dynamics for large flap angle and large induced inflow angle of attack is derived in this paper with nonlinear aerodynamics . Numerical simulations are performed by solving the nonlinear flapping ordinary differential equation for steady state conditions and the validity of the small angle approximations are More >

Displaying 3451-3460 on page 346 of 3799. Per Page