Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4,003)
  • Open Access

    ARTICLE

    Free and Forced Vibrations of Thick Rectangular Plates using Higher-Order Shear and Normal Deformable Plate Theory and Meshless Petrov-Galerkin (MLPG) Method

    L. F. Qian1,2, R. C. Batra3, L. M. Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.5, pp. 519-534, 2003, DOI:10.3970/cmes.2003.004.519

    Abstract We use a meshless local Petrov-Galerkin (MLPG) method to analyze three-dimensional infinitesimal elastodynamic deformations of a homogeneous rectangular plate subjected to different edge conditions. We employ a higher-order plate theory in which both transverse shear and transverse normal deformations are considered. Natural frequencies and the transient response to external loads have been computed for isotropic and orthotropic plates. Computed results are found to agree with those obtained from the analysis of the 3-dimensional problem either analytically or by the finite element method. More >

  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving the Weakly-Singular Traction & Displacement Boundary Integral Equations

    S. N. Atluri1, Z. D. Han1, S. Shen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.5, pp. 507-518, 2003, DOI:10.3970/cmes.2003.004.507

    Abstract The general Meshless Local Petrov-Galerkin (MLPG) type weak-forms of the displacement & traction boundary integral equations are presented, for solids undergoing small deformations. These MLPG weak forms provide the most general basis for the numerical solution of the non-hyper-singular displacement and traction BIEs [given in Han, and Atluri (2003)], which are simply derived by using the gradients of the displacements of the fundamental solutions [Okada, Rajiyah, and Atluri (1989a,b)]. By employing the various types of test functions, in the MLPG-type weak-forms of the non-hyper-singular dBIE and tBIE over the local sub-boundary surfaces, several types of… More >

  • Open Access

    ARTICLE

    Shape Optimization of Elastic Structural Systems Undergoing Large Rotations: Simultaneous Solution Procedure

    Adnan Ibrahimbegovic1, Catherine Knopf-Lenoir2

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.2, pp. 337-344, 2003, DOI:10.3970/cmes.2003.004.337

    Abstract In this work we present an unconventional procedure for combining the optimal shape design and nonlinear analysis in mechanics. The main goal of the presented procedure is to enhance computational efficiency for nonlinear problems with respect to the conventional, sequential approach by solving the analysis and design phases simultaneously. A detailed development is presented for the chosen model problem, the 3d rod undergoing large rotations. More >

  • Open Access

    ARTICLE

    Variational Formulation and Symmetric Tangent Operator for Shells with Finite Rotation Field

    Yoshitaka Suetake1, Masashi Iura2, S. N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.2, pp. 329-336, 2003, DOI:10.3970/cmes.2003.004.329

    Abstract The objective of this paper is to examine the symmetry of the tangent operator for nonlinear shell theories with the finite rotation field. As well known, it has been stated that since the rotation field carries the Lie group structure, not a vector space one, the tangent operator incorporating the rotation field does not become symmetric. In this paper, however, it is shown that by adopting a rotation vector as a variable, the symmetry can be achieved in the Lagrangean (material) description. First, we present a general concept for the problem. Next, we adopt the More >

  • Open Access

    ARTICLE

    Finite Displacement Analysis Using Rotational Degrees of Freedom about Three Right-angled Axes

    Humihiko Gotou1, Takashi Kuwataka1, Terumasa Nishihara1, Tetsuo Iwakuma1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.2, pp. 319-328, 2003, DOI:10.3970/cmes.2003.004.319

    Abstract The stiffness equation in finite displacement problems is often derived from the virtual work equation, partly in order to avoid the complicated formulation based on the potential functional. Describing the virtual rotational angles by infinitesimal rotational angles about three axes of the right-angled Cartesian coordinate system, we formulate tangent stiffness equations whose rotational degrees of freedom are described by rotational angles about the three axes. The rotational degrees of freedom are useful to treat three rotational components in nodal displacement vectors as vector components for coordinate transformation, when non-vector components like Euler's angles are used More >

  • Open Access

    ARTICLE

    A new finite element formulation of three-dimensional beam theory based on interpolation of curvature

    D. Zupan1, M. Saje1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.2, pp. 301-318, 2003, DOI:10.3970/cmes.2003.004.301

    Abstract A new finite element formulation of the `kinematically exact finite-strain beam theory' is presented. The finite element formulation employs the generalized virtual work in which the main role is played by the pseudo-curvature vector. The solution of the governing equations is found by using a combined Galerkin-collocation algorithm. More >

  • Open Access

    ARTICLE

    Finite-Element Nonlinear Dynamics of Flexible Structures in Three Dimensions

    S. Okamoto1, Y. Omura1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.2, pp. 287-300, 2003, DOI:10.3970/cmes.2003.004.287

    Abstract The purpose of this study is to develop a procedure for performing a dynamic analysis in the case that a structure undergoes large translational and rotational displacements when moving along a nonlinear trajectory at variable velocity. Finite-element equations of motion that include the inertial force of the structure's motion have been derived. The equations also account for the geometric nonlinearity that has to be considered in a problem of finite translational and rotational displacements. A finite rotational matrix was used to transfer vectors or matrices measured in a certain coordinate frame to those measured in More >

  • Open Access

    ARTICLE

    A Conservative Time Integration Scheme for Dynamics of Elasto-damaged Thin Shells

    L. Briseghella1, C. Majorana1, P. Pavan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.2, pp. 273-286, 2003, DOI:10.3970/cmes.2003.004.273

    Abstract Some aspects of the application of a conservative time integration scheme to the non-linear dynamics of elasto-damaged thin shells are presented. The main characteristic of the scheme is to be conservative, in the sense that it allows the time-discrete system to preserve the basic laws of continuum, namely the balance of the linear and angular momenta as well as the fulfilment of the second law of thermodynamic. Here the method is applied to thin shells under large displacements and rotations. The constitutive model adopted is built coupling the linear elastic model of De Saint Venant-Kirchhoff More >

  • Open Access

    ARTICLE

    A Buckling and Postbuckling Analysis of Rods Under End Torque and Compressive Load

    Wen Yi Lin1, Kuo Mo Hsiao2

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.2, pp. 259-272, 2003, DOI:10.3970/cmes.2003.004.259

    Abstract The buckling and postbuckling behavior of spatial rods under different types of end torque and compressive axial force is investigated using finite element method. All coupling among bending, twisting, and stretching deformations for beam element is considered by consistent second-order linearization of the fully geometrically nonlinear beam theory. However, the third order term of the twist rate is also considered. An incremental-iterative method based on the Newton-Raphson method combined with constant arc length of incremental displacement vector is employed for the solution of nonlinear equilibrium equations. The zero value of the tangent stiffness matrix determinant More >

  • Open Access

    ARTICLE

    Accuracy of Co-rotational Formulation for 3-D Timoshenko's Beam

    M. Iura1, Y. Suetake2, S. N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.4, No.2, pp. 249-258, 2003, DOI:10.3970/cmes.2003.004.249

    Abstract An accuracy of finite element solutions for 3-D Timoshenko's beams, obtained using a co-rotational formulation, is discussed. The co-rotational formulation has often been used with an assumption that the relative deformations are small. A fundamental question, therefore, has been raised as to whether or not the numerical solutions obtained approach the solutions of the exact theory. In this paper, from theoretical point of view, we investigate the accuracy of the co-rotational formulation for 3-D Timoshenko's beam undergoing finite strains and finite rotations. It is shown that the use of the conventional secant coordinates fails to More >

Displaying 3831-3840 on page 384 of 4003. Per Page