Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    RECENT ADVANCES IN UNDERSTANDING OF MASS TRANSFER PHENOMENA IN DIRECT METHANOL FUEL CELLS OPERATING WITH CONCENTRATED FUEL

    Q.X. Wua, Y.L. Heb, T.S. Zhaoa,b,*

    Frontiers in Heat and Mass Transfer, Vol.2, No.3, pp. 1-14, 2011, DOI:10.5098/hmt.v2.3.2001

    Abstract Running direct methanol fuel cells (DMFC) with concentrated fuel is desirable to maximize the specific energy of the fuel cell system and to improve the performance by mitigating the water flooding problem associated with diluted methanol operation. This article provides a comprehensive review of recent advances in understanding mass transport phenomena in DMFCs operating with concentrated fuel. The review starts with elaborating the key issues of mass transport of reactants and products associated with highly-concentrated methanol operation, followed by summarizing and discussing past experimental and numerical investigations into the effects of the membrane electrode assembly (MEA) design, flow field structure… More >

  • Open Access

    ARTICLE

    DETAILED ANALYSIS OF AN ENDOREVERSIBLE FUEL CELL : MAXIMUM POWER AND OPTIMAL OPERATING TEMPERATURE DETERMINATION

    Alexandre Vaudreya,*, Philippe Baucourb, François Lanzettab, Raynal Glisesb

    Frontiers in Heat and Mass Transfer, Vol.3, No.3, pp. 1-8, 2012, DOI:10.5098/hmt.v3.3.3001

    Abstract Producing electrical work in consuming chemical energy, the fuel cell (FC) is forced by the 2nd law to reject heat to its surrounding. However, as it occurs for any other type of engine, this thermal energy cannot be exchanged in an isothermal way in finite time or through finite areas. As it was already done for various types of systems, including chemical engines, the fuel cell is here studied within the finite time thermodynamics framework. An endoreversible fuel cell is then defined, internally reversible but producing entropy during heat exchanges with its ambiance. Considering usual H2/O2 and H2/air chemical reactions… More >

Displaying 1-10 on page 1 of 2. Per Page