Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access


    A mapping method for shock waves using ALE formulation

    Souli, M.1, Aquelet, N.2, Al-Bahkali, E.3, Moatamedi, M.4

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.2, pp. 119-133, 2013, DOI:10.3970/cmes.2013.091.119

    Abstract To simulate accurately a pressure wave propagation problem, a fine mesh is required in order to capture peak pressures accurately. This may require a very large size problem with several millions of elements. To reduce CPU time and prevent high mesh distortion, a two-dimensional problem for blast ignition and pressure propagation is performed first on a fixed Eulerian mesh. When the pressure wave gets closer to the structure, a three dimensional ALE simulation follows, where the fluid mesh and structure mesh at the fluid structure interface are coincident. The three dimensional problem is performed after… More >

  • Open Access


    Fluid Structure Interaction for Bird Impact Problem: Experimental and Numerical Investigation

    Souli, M.1, Gabrys, J.2

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.2, pp. 177-192, 2012, DOI:10.3970/cmes.2012.085.177

    Abstract Bird impacts on aircraft are very common and cause significant safety threats to commercial and military aircraft. According to FAA ( Federal American Aviation) regulations, aircraft should be able to land safely following specified types of bird impact on components such as radomes, windshields, engines leading edge structures and other exposed components. Thus exposed components are required to be certified for bird impact. In order to evaluate whether the aircraft is compliant to FAA requirements, several experimental tests and numerical simulations of bird impact on components need to be preformed. This paper presents an experimental More >

  • Open Access


    Experimental and Numerical Investigation of Instructions for Hyperelastic Membrane Inflation Using Fluid Structure Coupling

    M.Souli1, F.Erchiqui2

    CMES-Computer Modeling in Engineering & Sciences, Vol.77, No.3&4, pp. 183-200, 2011, DOI:10.3970/cmes.2011.077.183

    Abstract During the design process of membrane structure to resist to high pressure loading, and the characterization of hyperelastic material, a structure made up of thin rubber undergoes large deformation and rotation under high pressure loading out of high pressurized gas. Until recently, to simulate the inflation of the hyperelastic membrane, a uniform pressure based on thermodynamic model or experimental tests is applied to the structure, as boundary conditions. From a computational time point of view, this approach is very fast, since no computational fluid dynamics is involved in the simulation. However, at the late stage… More >

  • Open Access


    SPH and FEM Investigation of Hydrodynamic Impact Problems

    Al-Bahkali Essam1, Souli Mhamed2, Al-Bahkali Thamar1

    CMC-Computers, Materials & Continua, Vol.46, No.1, pp. 57-78, 2015, DOI:10.3970/cmc.2015.046.057

    Abstract Simulation of hydrodynamic impact problems and its effect on surrounding structures, can be considered as a fluid structure coupling problem. The application is mainly used in automotive and aerospace engineering and also in civil engineering. Classical FEM and Finite Volume methods were the main formulations used by engineers to solve these problems. For the last decades, new formulations have been developed for fluid structure coupling applications using mesh free methods as SPH method, (Smooth Particle Hydrodynamic) and DEM (Discrete Element Method). Up to these days very little has been done to compare different methods and… More >

Displaying 1-10 on page 1 of 4. Per Page