Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,520)
  • Open Access

    ARTICLE

    Analyzing Human Trafficking Networks Using Graph-Based Visualization and ARIMA Time Series Forecasting

    Naif Alsharabi1,*, Akashdeep Bhardwaj2,*

    Journal of Cyber Security, Vol.7, pp. 135-163, 2025, DOI:10.32604/jcs.2025.064019 - 18 June 2025

    Abstract In a world driven by unwavering moral principles rooted in ethics, the widespread exploitation of human beings stands universally condemned as abhorrent and intolerable. Traditional methods employed to identify, prevent, and seek justice for human trafficking have demonstrated limited effectiveness, leaving us confronted with harrowing instances of innocent children robbed of their childhood, women enduring unspeakable humiliation and sexual exploitation, and men trapped in servitude by unscrupulous oppressors on foreign shores. This paper focuses on human trafficking and introduces intelligent technologies including graph database solutions for deciphering unstructured relationships and entity nodes, enabling the comprehensive More >

  • Open Access

    REVIEW

    Public Health Implications of Road Construction and Traffic Congestion in a Hydrocarbon-Polluted Environment: An Assessment of Air and Noise Pollution

    Idongesit Sunday Ambrose1, Sunday Edet Etuk2, Okechukwu Ebuka Agbasi3,*, Ijah Ioryue Silas4, Unyime Udoette Saturday5, Eyo Edet Orok6

    Revue Internationale de Géomatique, Vol.34, pp. 335-350, 2025, DOI:10.32604/rig.2025.064552 - 13 June 2025

    Abstract Road construction and traffic congestion are increasingly recognized as major contributors to environmental and public health challenges in urban Nigeria, particularly in Rivers State. Despite growing urbanization, a gap remains in localized data on the combined effects of air and noise pollution in hydrocarbon-polluted environments. This study addresses that gap by conducting a preliminary environmental health assessment focused on the Port Harcourt Ring Road project. Air quality and noise levels were monitored in situ at 20 strategically selected locations, with five control points included for baseline comparison. Digital portable meters were used to measure concentrations of… More >

  • Open Access

    ARTICLE

    Deep Learning-Based Glass Detection for Smart Glass Manufacturing Processes

    Seungmin Lee1, Beomseong Kim2, Heesung Lee3,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1397-1415, 2025, DOI:10.32604/cmc.2025.066152 - 09 June 2025

    Abstract This study proposes an advanced vision-based technology for detecting glass products and identifying defects in a smart glass factory production environment. Leveraging artificial intelligence (AI) and computer vision, the research aims to automate glass detection processes and maximize production efficiency. The primary focus is on developing a precise glass detection and quality management system tailored to smart manufacturing environments. The proposed system utilizes the various YOLO (You Only Look Once) models for glass detection, comparing their performance to identify the most effective architecture. Input images are preprocessed using a Gaussian Mixture Model (GMM) to remove… More >

  • Open Access

    ARTICLE

    Optimizing Feature Selection by Enhancing Particle Swarm Optimization with Orthogonal Initialization and Crossover Operator

    Indu Bala*, Wathsala Karunarathne, Lewis Mitchell

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 727-744, 2025, DOI:10.32604/cmc.2025.065706 - 09 June 2025

    Abstract Recent advancements in computational and database technologies have led to the exponential growth of large-scale medical datasets, significantly increasing data complexity and dimensionality in medical diagnostics. Efficient feature selection methods are critical for improving diagnostic accuracy, reducing computational costs, and enhancing the interpretability of predictive models. Particle Swarm Optimization (PSO), a widely used metaheuristic inspired by swarm intelligence, has shown considerable promise in feature selection tasks. However, conventional PSO often suffers from premature convergence and limited exploration capabilities, particularly in high-dimensional spaces. To overcome these limitations, this study proposes an enhanced PSO framework incorporating Orthogonal… More >

  • Open Access

    ARTICLE

    Federated Learning and Blockchain Framework for Scalable and Secure IoT Access Control

    Ammar Odeh*, Anas Abu Taleb

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 447-461, 2025, DOI:10.32604/cmc.2025.065426 - 09 June 2025

    Abstract The increasing deployment of Internet of Things (IoT) devices has introduced significant security challenges, including identity spoofing, unauthorized access, and data integrity breaches. Traditional security mechanisms rely on centralized frameworks that suffer from single points of failure, scalability issues, and inefficiencies in real-time security enforcement. To address these limitations, this study proposes the Blockchain-Enhanced Trust and Access Control for IoT Security (BETAC-IoT) model, which integrates blockchain technology, smart contracts, federated learning, and Merkle tree-based integrity verification to enhance IoT security. The proposed model eliminates reliance on centralized authentication by employing decentralized identity management, ensuring tamper-proof… More >

  • Open Access

    ARTICLE

    FSMMTD: A Feature Subset-Based Malicious Traffic Detection Method

    Xuan Wu1, Yafei Song1, Xiaodan Wang1,*, Peng Wang1, Qian Xiang2

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1279-1305, 2025, DOI:10.32604/cmc.2025.064471 - 09 June 2025

    Abstract With the growth of the Internet of Things (IoT) comes a flood of malicious traffic in the IoT, intensifying the challenges of network security. Traditional models operate with independent layers, limiting their effectiveness in addressing these challenges. To address this issue, we propose a cross-layer cooperative Feature Subset-Based Malicious Traffic Detection (FSMMTD) model for detecting malicious traffic. Our approach begins by applying an enhanced random forest method to adaptively filter and retain highly discriminative first-layer features. These processed features are then input into an improved state-space model that integrates the strengths of recurrent neural networks… More >

  • Open Access

    ARTICLE

    ONTDAS: An Optimized Noise-Based Traffic Data Augmentation System for Generalizability Improvement of Traffic Classifiers

    Rongwei Yu1, Jie Yin1,*, Jingyi Xiang1, Qiyun Shao2, Lina Wang1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 365-391, 2025, DOI:10.32604/cmc.2025.064438 - 09 June 2025

    Abstract With the emergence of new attack techniques, traffic classifiers usually fail to maintain the expected performance in real-world network environments. In order to have sufficient generalizability to deal with unknown malicious samples, they require a large number of new samples for retraining. Considering the cost of data collection and labeling, data augmentation is an ideal solution. We propose an optimized noise-based traffic data augmentation system, ONTDAS. The system uses a gradient-based searching algorithm and an improved Bayesian optimizer to obtain optimized noise. The noise is injected into the original samples for data augmentation. Then, an More >

  • Open Access

    ARTICLE

    Toward Intrusion Detection of Industrial Cyber-Physical System: A Hybrid Approach Based on System State and Network Traffic Abnormality Monitoring

    Junbin He1,2, Wuxia Zhang3, Xianyi Liu1, Jinping Liu2,*, Guangyi Yang4

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1227-1252, 2025, DOI:10.32604/cmc.2025.064402 - 09 June 2025

    Abstract The integration of cloud computing into traditional industrial control systems is accelerating the evolution of Industrial Cyber-Physical System (ICPS), enhancing intelligence and autonomy. However, this transition also expands the attack surface, introducing critical security vulnerabilities. To address these challenges, this article proposes a hybrid intrusion detection scheme for securing ICPSs that combines system state anomaly and network traffic anomaly detection. Specifically, an improved variation-Bayesian-based noise covariance-adaptive nonlinear Kalman filtering (IVB-NCA-NLKF) method is developed to model nonlinear system dynamics, enabling optimal state estimation in multi-sensor ICPS environments. Intrusions within the physical sensing system are identified by More >

  • Open Access

    ARTICLE

    A Mask-Guided Latent Low-Rank Representation Method for Infrared and Visible Image Fusion

    Kezhen Xie1,2, Syed Mohd Zahid Syed Zainal Ariffin1,*, Muhammad Izzad Ramli1

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 997-1011, 2025, DOI:10.32604/cmc.2025.063469 - 09 June 2025

    Abstract Infrared and visible image fusion technology integrates the thermal radiation information of infrared images with the texture details of visible images to generate more informative fused images. However, existing methods often fail to distinguish salient objects from background regions, leading to detail suppression in salient regions due to global fusion strategies. This study presents a mask-guided latent low-rank representation fusion method to address this issue. First, the GrabCut algorithm is employed to extract a saliency mask, distinguishing salient regions from background regions. Then, latent low-rank representation (LatLRR) is applied to extract deep image features, enhancing More >

  • Open Access

    ARTICLE

    URLLC Service in UAV Rate-Splitting Multiple Access: Adapting Deep Learning Techniques for Wireless Network

    Reem Alkanhel1,#, Abuzar B. M. Adam2,#, Samia Allaoua Chelloug1, Dina S. M. Hassan1,*, Mohammed Saleh Ali Muthanna3, Ammar Muthanna4

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 607-624, 2025, DOI:10.32604/cmc.2025.063206 - 09 June 2025

    Abstract The 3GPP standard defines the requirements for next-generation wireless networks, with particular attention to Ultra-Reliable Low-Latency Communications (URLLC), critical for applications such as Unmanned Aerial Vehicles (UAVs). In this context, Non-Orthogonal Multiple Access (NOMA) has emerged as a promising technique to improve spectrum efficiency and user fairness by allowing multiple users to share the same frequency resources. However, optimizing key parameters–such as beamforming, rate allocation, and UAV trajectory–presents significant challenges due to the nonconvex nature of the problem, especially under stringent URLLC constraints. This paper proposes an advanced deep learning-driven approach to address the resulting… More >

Displaying 1-10 on page 1 of 2520. Per Page