Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (551)
  • Open Access

    ARTICLE

    Data-Driven Prediction and Optimization of Mechanical Properties and Vibration Damping in Cast Iron–Granite-Epoxy Hybrid Composites

    Girish Hariharan1, Vinyas1, Gowrishankar Mandya Chennegowda1, Nitesh Kumar1, Shiva Kumar1, Deepak Doreswamy2, Subraya Krishna Bhat1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073772 - 12 January 2026

    Abstract This study presents a framework involving statistical modeling and machine learning to accurately predict and optimize the mechanical and damping properties of hybrid granite–epoxy (G–E) composites reinforced with cast iron (CI) filler particles. Hybrid G–E composite with added cast iron (CI) filler particles enhances stiffness, strength, and vibration damping, offering enhanced performance for vibration-sensitive engineering applications. Unlike conventional approaches, this work simultaneously employs Artificial Neural Networks (ANN) for high-accuracy property prediction and Response Surface Methodology (RSM) for in-depth analysis of factor interactions and optimization. A total of 24 experimental test data sets of varying input… More >

  • Open Access

    ARTICLE

    A Hybrid Experimental-Numerical Framework for Identifying Viscoelastic Parameters of 3D-Printed Polyurethane Samples: Cyclic Tests, Creep/Relaxation and Inverse Finite Element Analysis

    Nikita Golovkin1,2, Olesya Nikulenkova3, Vsevolod Pobezhimov1, Alexander Nesmelov1, Sergei Chvalun1, Fedor Sorokin3, Arthur Krupnin1,3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073161 - 12 January 2026

    Abstract This study presents and verifies a hybrid methodology for reliable determination of parameters in structural rheological models (Zener, Burgers, and Maxwell) describing the viscoelastic behavior of polyurethane specimens manufactured using extrusion-based 3D printing. Through comprehensive testing, including cyclic compression at strain rates ranging from 0.12 to 120 mm/min (0%–15% strain) and creep/relaxation experiments (10%–30% strain), the lumped parameters were independently determined using both analytical and numerical solutions of the models’ differential equations, followed by cross-verification in additional experiments. Numerical solutions for creep and relaxation problems were obtained using finite element analysis, with the three-parameter Mooney-Rivlin… More > Graphic Abstract

    A Hybrid Experimental-Numerical Framework for Identifying Viscoelastic Parameters of 3D-Printed Polyurethane Samples: Cyclic Tests, Creep/Relaxation and Inverse Finite Element Analysis

  • Open Access

    ARTICLE

    An RMD-YOLOv11 Approach for Typical Defect Detection of PV Modules

    Tao Geng1, Shuaibing Li1,*, Yunyun Yun1, Yongqiang Kang1, Hongwei Li2, Junmin Zhu2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071644 - 12 January 2026

    Abstract In order to address the challenges posed by complex background interference, high miss-detection rates of micro-scale defects, and limited model deployment efficiency in photovoltaic (PV) module defect detection, this paper proposes an efficient detection framework based on an improved YOLOv11 architecture. First, a Re-parameterized Convolution (RepConv) module is integrated into the backbone to enhance the model’s sensitivity to fine-grained defects—such as micro-cracks and hot spots—while maintaining high inference efficiency. Second, a Multi-Scale Feature Fusion Convolutional Block Attention Mechanism (MSFF-CBAM) is designed to guide the network toward critical defect regions by jointly modeling channel-wise and spatial… More >

  • Open Access

    ARTICLE

    Virtual Synchronous Generator Control Strategy Based on Parameter Self-Tuning

    Jin Lin1,*, Bin Yu2, Chao Chen1, Jiezhen Cai1, Yifan Wu2, Cunping Wang3

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069310 - 27 December 2025

    Abstract With the increasing integration of renewable energy, microgrids are increasingly facing stability challenges, primarily due to the lack of inherent inertia in inverter-dominated systems, which is traditionally provided by synchronous generators. To address this critical issue, Virtual Synchronous Generator (VSG) technology has emerged as a highly promising solution by emulating the inertia and damping characteristics of conventional synchronous generators. To enhance the operational efficiency of virtual synchronous generators (VSGs), this study employs small-signal modeling analysis, root locus methods, and synchronous generator power-angle characteristic analysis to comprehensively evaluate how virtual inertia and damping coefficients affect frequency… More > Graphic Abstract

    Virtual Synchronous Generator Control Strategy Based on Parameter Self-Tuning

  • Open Access

    ARTICLE

    Efficient Video Emotion Recognition via Multi-Scale Region-Aware Convolution and Temporal Interaction Sampling

    Xiaorui Zhang1,2,*, Chunlin Yuan3, Wei Sun4, Ting Wang5

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.071043 - 09 December 2025

    Abstract Video emotion recognition is widely used due to its alignment with the temporal characteristics of human emotional expression, but existing models have significant shortcomings. On the one hand, Transformer multi-head self-attention modeling of global temporal dependency has problems of high computational overhead and feature similarity. On the other hand, fixed-size convolution kernels are often used, which have weak perception ability for emotional regions of different scales. Therefore, this paper proposes a video emotion recognition model that combines multi-scale region-aware convolution with temporal interactive sampling. In terms of space, multi-branch large-kernel stripe convolution is used to More >

  • Open Access

    ARTICLE

    Cognitive Erasure-Coded Data Update and Repair for Mitigating I/O Overhead

    Bing Wei, Ming Zhong, Qian Chen, Yi Wu*, Yubin Li

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069910 - 09 December 2025

    Abstract In erasure-coded storage systems, updating data requires parity maintenance, which often leads to significant I/O amplification due to “write-after-read” operations. Furthermore, scattered parity placement increases disk seek overhead during repair, resulting in degraded system performance. To address these challenges, this paper proposes a Cognitive Update and Repair Method (CURM) that leverages machine learning to classify files into write-only, read-only, and read-write categories, enabling tailored update and repair strategies. For write-only and read-write files, CURM employs a data-difference mechanism combined with fine-grained I/O scheduling to minimize redundant read operations and mitigate I/O amplification. For read-write files,… More >

  • Open Access

    ARTICLE

    Semi-Fragile Image Watermarking Using Quantization-Based DCT for Tamper Localization

    Agit Amrullah, Ferda Ernawan*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-16, 2026, DOI:10.32604/cmc.2025.069229 - 09 December 2025

    Abstract This paper proposes a tamper detection technique for semi-fragile watermarking using Quantization-based Discrete Cosine Transform (DCT) for tamper localization. In this study, the proposed embedding strategy is investigated by experimental tests over the diagonal order of the DCT coefficients. The cover image is divided into non-overlapping blocks of size 8 × 8 pixels. The DCT is applied to each block, and the coefficients are arranged using a zig-zag pattern within the block. In this study, the low-frequency coefficients are selected to examine the impact of the imperceptibility score and tamper detection accuracy. High accuracy of… More >

  • Open Access

    ARTICLE

    A Deep Learning Framework for Heart Disease Prediction with Explainable Artificial Intelligence

    Muhammad Adil1, Nadeem Javaid1,*, Imran Ahmed2, Abrar Ahmed3, Nabil Alrajeh4,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071215 - 10 November 2025

    Abstract Heart disease remains a leading cause of mortality worldwide, emphasizing the urgent need for reliable and interpretable predictive models to support early diagnosis and timely intervention. However, existing Deep Learning (DL) approaches often face several limitations, including inefficient feature extraction, class imbalance, suboptimal classification performance, and limited interpretability, which collectively hinder their deployment in clinical settings. To address these challenges, we propose a novel DL framework for heart disease prediction that integrates a comprehensive preprocessing pipeline with an advanced classification architecture. The preprocessing stage involves label encoding and feature scaling. To address the issue of… More >

  • Open Access

    ARTICLE

    Impact of Data Processing Techniques on AI Models for Attack-Based Imbalanced and Encrypted Traffic within IoT Environments

    Yeasul Kim1, Chaeeun Won1, Hwankuk Kim2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-28, 2026, DOI:10.32604/cmc.2025.069608 - 10 November 2025

    Abstract With the increasing emphasis on personal information protection, encryption through security protocols has emerged as a critical requirement in data transmission and reception processes. Nevertheless, IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices, spanning a range of devices from non-encrypted ones to fully encrypted ones. Given the limited visibility into payloads in this context, this study investigates AI-based attack detection methods that leverage encrypted traffic metadata, eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices. Using the UNSW-NB15 and CICIoT-2023 dataset, encrypted and… More >

  • Open Access

    ARTICLE

    GFL-SAR: Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement

    Hefei Wang, Ruichun Gu*, Jingyu Wang, Xiaolin Zhang, Hui Wei

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069251 - 10 November 2025

    Abstract Graph Federated Learning (GFL) has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information. However, existing GFL approaches often lack the capability for comprehensive feature extraction and adaptive optimization, particularly in non-independent and identically distributed (NON-IID) scenarios where balancing global structural understanding and local node-level detail remains a challenge. To this end, this paper proposes a novel framework called GFL-SAR (Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement), which enhances the representation learning capability of graph data through a dual-branch… More >

Displaying 1-10 on page 1 of 551. Per Page