Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (14,432)
  • Open Access


    MicroRNA-342 Prohibits Proliferation and Invasion of Melanoma Cells by Directly Targeting Zinc-Finger E-Box-Binding Homeobox 1

    Quan Shi*†, Qi He*, Jing Wei*

    Oncology Research, Vol.26, No.9, pp. 1447-1455, 2018, DOI:10.3727/096504018X15193823766141

    Abstract As documented in numerous studies, microRNAs (miRNAs) play key roles in various biological processes associated with melanoma occurrence and development. In this study, we found that miRNA-342 (miR-342) was significantly downregulated in melanoma tissues and cell lines. Additionally, the ectopic expression of miR-342 prohibited the cell proliferation and invasion of melanoma. Moreover, zinc-finger E-box-binding homeobox 1 (ZEB1) was identified as a direct target gene of miR-342 in melanoma. Similar with the results induced by miR-342 overexpression, ZEB1 knockdown attenuated cell proliferation and invasion in melanoma. Furthermore, the restoration of ZEB1 expression reversed the suppressive effects More >

  • Open Access


    MicroRNA-935 Inhibits Proliferation and Invasion of Osteosarcoma Cells by Directly Targeting High Mobility Group Box 1

    Zhiqiang Liu*1, Qiang Li*1, Xin Zhao, Bin Cui*, Libo Zhang*, Qiang Wang*

    Oncology Research, Vol.26, No.9, pp. 1439-1446, 2018, DOI:https://doi.org/10.3727/096504018X15189093975640

    Abstract Numerous studies have suggested that microRNAs (miRNAs) are dysregulated in osteosarcoma (OS), implicating miRNAs in OS initiation and progression. Therefore, knowledge of aberrantly expressed miRNAs in OS may provide novel mechanistic insights into the tumorigenesis and tumor development of OS and facilitate therapeutic methods for patients with this aggressive bone neoplasm. In this study, data obtained from reverse transcription quantitative polymerase chain reaction (RT-qPCR) revealed that miR-935 was significantly decreased in OS tissues and cell lines. Restoration expression of miR-935 obviously restricted proliferation and invasion of OS cells. In addition, high-mobility group box 1 (HMGB1)… More >

  • Open Access


    MicroRNA-331 Inhibits Proliferation and Invasion of Melanoma Cells by Targeting Astrocyte-Elevated Gene-1

    Li Chen, Guozhang Ma, Xiaohui Cao, Xiaoxia An, Xiguang Liu

    Oncology Research, Vol.26, No.9, pp. 1429-1437, 2018, DOI:10.3727/096504018X15186047251584

    Abstract Melanoma is characterized by aggressive invasion, early metastasis, and resistance to existing chemotherapeutic agents. Accumulated studies have reported that microRNA (miRNA) is a potentially robust molecular tool for developing future therapeutic technologies. Therefore, examining the expression patterns, biological roles, and associated mechanisms of cancer-related miRNAs in melanoma is essential for developing novel therapeutic targets for patients with this disease. In this study, miRNA-331 (miR-331) was underexpressed in melanoma tissues and cell lines. Functional assays revealed that the enforced expression of miR-331 inhibited cell proliferation and invasion. In addition, astrocyte-elevated gene-1 (AEG-1) was identified as a More >

  • Open Access


    MicroRNA-744 Inhibits Cellular Proliferation and Invasion of Colorectal Cancer by Directly Targeting Oncogene Notch1

    Jian Shen, Minzhe Li

    Oncology Research, Vol.26, No.9, pp. 1401-1409, 2018, DOI:10.3727/096504018X15188747585738

    Abstract Accumulated studies have strongly implicated aberrantly expressed microRNAs (miRNAs) in carcinogenesis and cancer progression of various cancers, including colorectal cancer (CRC). Hence, a comprehensive study of miRNAs and their association with CRC may be a promising therapeutic method for patients with this malignancy. MicroRNA-744 (miR-744) is abnormally expressed in several types of human cancer. Thus far, little is known about the expression, biological roles, and exact mechanisms of miR-744 in CRC. Thus, the present study measured the expression level of miR-744 and investigated its roles and associated molecular mechanisms in CRC. This study demonstrated that… More >

  • Open Access


    MicroRNA-139-3p Suppresses Tumor Growth and Metastasis in Hepatocellular Carcinoma by Repressing ANXA2R

    Zeng Cheng Zou*1, Min Dai*1, Zeng Yin Huang, Yi Lu, He Ping Xie*, Yi Fang Li§, Yue Li*, Ying Tan, Feng Lin Wang*

    Oncology Research, Vol.26, No.9, pp. 1391-1399, 2018, DOI:10.3727/096504018X15178798885361

    Abstract The direct roles of miR-139-3p on hepatocellular carcinoma (HCC) cell growth and metastasis remain poorly understood. We attempted to demonstrate the regulatory role of miR-139-3p in HCC progression and its underlying mechanisms. Here we showed that miR-139-3p expression was significantly reduced in the HCC tissues compared to paratumor tissues. Exogenous overexpression of miR-139-3p inhibited the migration and invasion of HCC cells, whereas downregulation of miR-139-3p was able to induce HCC HepG2 and SNU-449 cell migration and invasion. In addition, miR-139-3p inhibited HCC growth and lung metastasis in an in vivo mouse model, which is mainly More >

  • Open Access


    Long Noncoding RNA CCAL Promotes Papillary Thyroid Cancer Progression by Activation of NOTCH1 Pathway

    Ying Ye, Yanan Song, Juhua Zhuang, Saifei He, Jing Ni, Wei Xia

    Oncology Research, Vol.26, No.9, pp. 1383-1390, 2018, DOI:10.3727/096504018X15188340975709

    Abstract Long noncoding RNA CCAL has been reported to promote tumor progression in various human cancers, including hepatocellular carcinoma, osteosarcoma, and colorectal cancer. However, the role of CCAL in papillary thyroid cancer remains largely unknown. In the present study, we found that the expression of CCAL was upregulated in papillary thyroid tumor tissues compared to adjacent normal tissues. Moreover, the expression of CCAL was positively related with papillary thyroid cancer severity and TNM stage and predicated poor prognosis. Besides, we found that knockdown of CCAL significantly inhibited papillary thyroid cancer cell proliferation, migration, and invasion in More >

  • Open Access


    miR-365 Suppresses Cholangiocarcinoma Cell Proliferation and Induces Apoptosis by Targeting E2F2

    Lunjian Chen*, Xiaorong Huang, Xinxin Chen

    Oncology Research, Vol.26, No.9, pp. 1375-1382, 2018, DOI:10.3727/096504018X15188352857437

    Abstract Cholangiocarcinoma (CCA) is one of the most malignant adenocarcinomas arising from bile duct epithelial cells. However, the molecular mechanism regulating CCA development and progression still needs to be investigated. Here we found that miR-365 was downregulated in CCA tissues compared with adjacent normal tissues. By functional experiments, we found that overexpression of miR-365 significantly inhibited CCA cell proliferation and promoted cellular apoptosis in vitro. Furthermore, administration with miR-365 markedly suppressed the growth of tumor tissues in vivo. Mechanistically, we identified E2F2 as the target gene of miR- 365 in CCA cells. We found that overexpression More >

  • Open Access


    MicroRNA-511 Inhibits Cellular Proliferation and Invasion in Colorectal Cancer by Directly Targeting Hepatoma-Derived Growth Factor

    Saifei He*1, Guangdong Wang†1, Jing Ni*, Juhua Zhuang*, Suiliang Zhuang, Guoyu Wang*, Ying Ye*, Wei Xia*

    Oncology Research, Vol.26, No.9, pp. 1355-1363, 2018, DOI:10.3727/096504018X15154094331876

    Abstract Dysregulated microRNA (miRNA) expression is involved in the occurrence and development of colorectal cancer (CRC) through the regulation of various important physiological events. Hence, miRNAs may be used as effective targets for CRC treatment; however, this hypothesis warrants further investigation. miRNA-511 (miR-511) plays vital roles in the progression of different tumor types. However, the expression, exact role, and the mechanisms underlying the regulation of colorectal carcinogenesis and progression by miR-511 remain poorly understood. This study presents that miR-511 expression was decreased in CRC tissues and cell lines compared with that in adjacent nonneoplastic tissues and More >

  • Open Access


    miR-126 Functions as a Tumor Suppressor by Targeting SRPK1 in Human Gastric Cancer

    Qiaorong Li*, Geng Wang, Hong Wang

    Oncology Research, Vol.26, No.9, pp. 1345-1353, 2018, DOI:10.3727/096504018X15180508535835

    Abstract The expression of miR-126 and serine–arginine protein kinase 1 (SRPK1) are linked to tumor development; nevertheless, its role in the tumor growth and invasion of gastric cancer (GC) and the underlying mechanism have not been clarified. Here the expression and role of miR-126 and SRPK1 were investigated in GC tissues and cells by in vitro assay, and then targets of miR-126 were identified by dual-luciferase reporter assay. In this study, miR-126 expression was downregulated and associated with lymph node metastasis and poor prognosis as well as SRPK1 expression. In vitro assay revealed that miR-126 obviously More >

  • Open Access


    Long Noncoding RNA FEZF1-AS1 Promotes Osteosarcoma Progression by Regulating the miR-4443/NUPR1 Axis

    Chengwei Zhou1, Jianxiang Xu1, Jinti Lin, Renjin Lin, Kai Chen, Jianzhong Kong, Xiaolong Shui

    Oncology Research, Vol.26, No.9, pp. 1335-1343, 2018, DOI:10.3727/096504018X15188367859402

    Abstract Long noncoding RNA (lncRNA) FEZF1-AS1 was demonstrated to facilitate cell proliferation and migration in some cancers. However, the functions of FEZF1-AS1 and its molecular mechanism in osteosarcoma remain to be elucidated. In our study, we found that the expression of FEZF1-AS1 was upregulated in osteosarcoma samples and cell lines compared with normal tissues or cells. Besides, we showed that the expression levels of FEZF1-AS1 in osteosarcoma patients were positively correlated with tumor metastasis and TNM stage. Additionally, FEZF1-AS1 knockdown inhibited cell proliferation, migration, and invasion in U2OS and MG63 cells, while upregulation had the opposite More >

Displaying 1-10 on page 1 of 14432. Per Page