Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Detecting Ethereum Ponzi Schemes Through Opcode Context Analysis and Oversampling-Based AdaBoost Algorithm

    Mengxiao Wang1,2, Jing Huang1,2,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1023-1042, 2023, DOI:10.32604/csse.2023.039569

    Abstract Due to the anonymity of blockchain, frequent security incidents and attacks occur through it, among which the Ponzi scheme smart contract is a classic type of fraud resulting in huge economic losses. Machine learning-based methods are believed to be promising for detecting ethereum Ponzi schemes. However, there are still some flaws in current research, e.g., insufficient feature extraction of Ponzi scheme smart contracts, without considering class imbalance. In addition, there is room for improvement in detection precision. Aiming at the above problems, this paper proposes an ethereum Ponzi scheme detection scheme through opcode context analysis… More >

  • Open Access

    ARTICLE

    A Credit Card Fraud Model Prediction Method Based on Penalty Factor Optimization AWTadaboost

    Wang Ning1,*, Siliang Chen2,*, Fu Qiang2, Haitao Tang2, Shen Jie2

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5951-5965, 2023, DOI:10.32604/cmc.2023.035558

    Abstract With the popularity of online payment, how to perform credit card fraud detection more accurately has also become a hot issue. And with the emergence of the adaptive boosting algorithm (Adaboost), credit card fraud detection has started to use this method in large numbers, but the traditional Adaboost is prone to overfitting in the presence of noisy samples. Therefore, in order to alleviate this phenomenon, this paper proposes a new idea: using the number of consecutive sample misclassifications to determine the noisy samples, while constructing a penalty factor to reconstruct the sample weight assignment. Firstly,… More >

  • Open Access

    ARTICLE

    Prediction of Suitable Candidates for COVID-19 Vaccination

    R. Sujatha1, B. Venkata Siva Krishna1, Jyotir Moy Chatterjee2, P. Rahul Naidu1, NZ Jhanjhi3,*, Challa Charita1, Eza Nerin Mariya1, Mohammed Baz4

    Intelligent Automation & Soft Computing, Vol.32, No.1, pp. 525-541, 2022, DOI:10.32604/iasc.2022.021216

    Abstract In the current times, COVID-19 has taken a handful of people’s lives. So, vaccination is crucial for everyone to avoid the spread of the disease. However, not every vaccine will be perfect or will get success for everyone. In the present work, we have analyzed the data from the Vaccine Adverse Event Reporting System and understood that the vaccines given to the people might or might not work considering certain demographic factors like age, gender, and multiple other variables like the state of living, etc. This variable is considered because it explains the unmentioned variables… More >

  • Open Access

    ARTICLE

    Fault Detection Algorithms for Achieving Service Continuity in Photovoltaic Farms

    Sherif S. M. Ghoneim1,*, Amr E. Rashed2, Nagy I. Elkalashy1

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 467-479, 2021, DOI:10.32604/iasc.2021.016681

    Abstract This study uses several artificial intelligence approaches to detect and estimate electrical faults in photovoltaic (PV) farms. The fault detection approaches of random forest, logistic regression, naive Bayes, AdaBoost, and CN2 rule induction were selected from a total of 12 techniques because they produced better decisions for fault detection. The proposed techniques were designed using distributed PV current measurements, plant current, plant voltage, and power. Temperature, radiation, and fault resistance were treated randomly. The proposed classification model was created using the Orange platform. A classification tree was visualized, consisting of seven nodes and four leaves,… More >

Displaying 1-10 on page 1 of 4. Per Page