Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    An Early Stopping-Based Artificial Neural Network Model for Atmospheric Corrosion Prediction of Carbon Steel

    Phyu Hnin Thike1, 2, Zhaoyang Zhao1, Peng Liu1, Feihu Bao1, Ying Jin1, Peng Shi1, *

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 2091-2109, 2020, DOI:10.32604/cmc.2020.011608 - 16 September 2020

    Abstract The optimization of network topologies to retain the generalization ability by deciding when to stop overtraining an artificial neural network (ANN) is an existing vital challenge in ANN prediction works. The larger the dataset the ANN is trained with, the better generalization the prediction can give. In this paper, a large dataset of atmospheric corrosion data of carbon steel compiled from several resources is used to train and test a multilayer backpropagation ANN model as well as two conventional corrosion prediction models (linear and Klinesmith models). Unlike previous related works, a grid searchbased hyperparameter tuning… More >

Displaying 1-10 on page 1 of 1. Per Page