Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (70)
  • Open Access

    ARTICLE

    Unknown DDoS Attack Detection with Sliced Iterative Normalizing Flows Technique

    Chin-Shiuh Shieh1, Thanh-Lam Nguyen1, Thanh-Tuan Nguyen2,*, Mong-Fong Horng1,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4881-4912, 2025, DOI:10.32604/cmc.2025.061001 - 06 March 2025

    Abstract DDoS attacks represent one of the most pervasive and evolving threats in cybersecurity, capable of crippling critical infrastructures and disrupting services globally. As networks continue to expand and threats become more sophisticated, there is an urgent need for Intrusion Detection Systems (IDS) capable of handling these challenges effectively. Traditional IDS models frequently have difficulties in detecting new or changing attack patterns since they heavily depend on existing characteristics. This paper presents a novel approach for detecting unknown Distributed Denial of Service (DDoS) attacks by integrating Sliced Iterative Normalizing Flows (SINF) into IDS. SINF utilizes the… More >

  • Open Access

    ARTICLE

    Machine Learning-Based Detection and Selective Mitigation of Denial-of-Service Attacks in Wireless Sensor Networks

    Soyoung Joo#, So-Hyun Park#, Hye-Yeon Shim, Ye-Sol Oh, Il-Gu Lee*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2475-2494, 2025, DOI:10.32604/cmc.2025.058963 - 17 February 2025

    Abstract As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. There exists a gap in research on the detection and response to attacks on Medium Access Control (MAC) mechanisms themselves, which would lead to service outages between nodes. Classifying exploitation and deceptive jamming attacks on control mechanisms is particularly challengingdue to their resemblance to normal heavy communication patterns. Accordingly, this paper proposes a machine learning-based selective attack mitigation model that detects DoS attacks on wireless networks by More >

  • Open Access

    ARTICLE

    Oversampling-Enhanced Feature Fusion-Based Hybrid ViT-1DCNN Model for Ransomware Cyber Attack Detection

    Muhammad Armghan Latif1, Zohaib Mushtaq2,*, Saifur Rahman3, Saad Arif4, Salim Nasar Faraj Mursal3, Muhammad Irfan3, Haris Aziz5

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1667-1695, 2025, DOI:10.32604/cmes.2024.056850 - 27 January 2025

    Abstract Ransomware attacks pose a significant threat to critical infrastructures, demanding robust detection mechanisms. This study introduces a hybrid model that combines vision transformer (ViT) and one-dimensional convolutional neural network (1DCNN) architectures to enhance ransomware detection capabilities. Addressing common challenges in ransomware detection, particularly dataset class imbalance, the synthetic minority oversampling technique (SMOTE) is employed to generate synthetic samples for minority class, thereby improving detection accuracy. The integration of ViT and 1DCNN through feature fusion enables the model to capture both global contextual and local sequential features, resulting in comprehensive ransomware classification. Tested on the UNSW-NB15 More >

  • Open Access

    ARTICLE

    TLERAD: Transfer Learning for Enhanced Ransomware Attack Detection

    Isha Sood*, Varsha Sharma

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2791-2818, 2024, DOI:10.32604/cmc.2024.055463 - 18 November 2024

    Abstract Ransomware has emerged as a critical cybersecurity threat, characterized by its ability to encrypt user data or lock devices, demanding ransom for their release. Traditional ransomware detection methods face limitations due to their assumption of similar data distributions between training and testing phases, rendering them less effective against evolving ransomware families. This paper introduces TLERAD (Transfer Learning for Enhanced Ransomware Attack Detection), a novel approach that leverages unsupervised transfer learning and co-clustering techniques to bridge the gap between source and target domains, enabling robust detection of both known and unknown ransomware variants. The proposed method More >

  • Open Access

    ARTICLE

    Optimizing Internet of Things Device Security with a Globalized Firefly Optimization Algorithm for Attack Detection

    Arkan Kh Shakr Sabonchi*

    Journal on Artificial Intelligence, Vol.6, pp. 261-282, 2024, DOI:10.32604/jai.2024.056552 - 18 October 2024

    Abstract The phenomenal increase in device connectivity is making the signaling and resource-based operational integrity of networks at the node level increasingly prone to distributed denial of service (DDoS) attacks. The current growth rate in the number of Internet of Things (IoT) attacks executed at the time of exchanging data over the Internet represents massive security hazards to IoT devices. In this regard, the present study proposes a new hybrid optimization technique that combines the firefly optimization algorithm with global searches for use in attack detection on IoT devices. We preprocessed two datasets, CICIDS and UNSW-NB15,… More >

  • Open Access

    ARTICLE

    Deploying Hybrid Ensemble Machine Learning Techniques for Effective Cross-Site Scripting (XSS) Attack Detection

    Noor Ullah Bacha1, Songfeng Lu1, Attiq Ur Rehman1, Muhammad Idrees2, Yazeed Yasin Ghadi3, Tahani Jaser Alahmadi4,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 707-748, 2024, DOI:10.32604/cmc.2024.054780 - 15 October 2024

    Abstract Cross-Site Scripting (XSS) remains a significant threat to web application security, exploiting vulnerabilities to hijack user sessions and steal sensitive data. Traditional detection methods often fail to keep pace with the evolving sophistication of cyber threats. This paper introduces a novel hybrid ensemble learning framework that leverages a combination of advanced machine learning algorithms—Logistic Regression (LR), Support Vector Machines (SVM), eXtreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and Deep Neural Networks (DNN). Utilizing the XSS-Attacks-2021 dataset, which comprises 460 instances across various real-world traffic-related scenarios, this framework significantly enhances XSS attack detection. Our approach, which… More >

  • Open Access

    ARTICLE

    Encrypted Cyberattack Detection System over Encrypted IoT Traffic Based on Statistical Intelligence

    Il Hwan Ji1, Ju Hyeon Lee1, Seungho Jeon2, Jung Taek Seo2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1519-1549, 2024, DOI:10.32604/cmes.2024.053437 - 27 September 2024

    Abstract In the early days of IoT’s introduction, it was challenging to introduce encryption communication due to the lack of performance of each component, such as computing resources like CPUs and batteries, to encrypt and decrypt data. Because IoT is applied and utilized in many important fields, a cyberattack on IoT can result in astronomical financial and human casualties. For this reason, the application of encrypted communication to IoT has been required, and the application of encrypted communication to IoT has become possible due to improvements in the computing performance of IoT devices and the development… More >

  • Open Access

    ARTICLE

    Machine Learning Enabled Novel Real-Time IoT Targeted DoS/DDoS Cyber Attack Detection System

    Abdullah Alabdulatif1, Navod Neranjan Thilakarathne2,*, Mohamed Aashiq3,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3655-3683, 2024, DOI:10.32604/cmc.2024.054610 - 12 September 2024

    Abstract The increasing prevalence of Internet of Things (IoT) devices has introduced a new phase of connectivity in recent years and, concurrently, has opened the floodgates for growing cyber threats. Among the myriad of potential attacks, Denial of Service (DoS) attacks and Distributed Denial of Service (DDoS) attacks remain a dominant concern due to their capability to render services inoperable by overwhelming systems with an influx of traffic. As IoT devices often lack the inherent security measures found in more mature computing platforms, the need for robust DoS/DDoS detection systems tailored to IoT is paramount for… More >

  • Open Access

    ARTICLE

    Internet of Things Enabled DDoS Attack Detection Using Pigeon Inspired Optimization Algorithm with Deep Learning Approach

    Turki Ali Alghamdi, Saud S. Alotaibi*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4047-4064, 2024, DOI:10.32604/cmc.2024.052796 - 12 September 2024

    Abstract Internet of Things (IoTs) provides better solutions in various fields, namely healthcare, smart transportation, home, etc. Recognizing Denial of Service (DoS) outbreaks in IoT platforms is significant in certifying the accessibility and integrity of IoT systems. Deep learning (DL) models outperform in detecting complex, non-linear relationships, allowing them to effectually severe slight deviations from normal IoT activities that may designate a DoS outbreak. The uninterrupted observation and real-time detection actions of DL participate in accurate and rapid detection, permitting proactive reduction events to be executed, hence securing the IoT network’s safety and functionality. Subsequently, this… More >

  • Open Access

    ARTICLE

    Deep Learning: A Theoretical Framework with Applications in Cyberattack Detection

    Kaveh Heidary*

    Journal on Artificial Intelligence, Vol.6, pp. 153-175, 2024, DOI:10.32604/jai.2024.050563 - 18 July 2024

    Abstract This paper provides a detailed mathematical model governing the operation of feedforward neural networks (FFNN) and derives the backpropagation formulation utilized in the training process. Network protection systems must ensure secure access to the Internet, reliability of network services, consistency of applications, safeguarding of stored information, and data integrity while in transit across networks. The paper reports on the application of neural networks (NN) and deep learning (DL) analytics to the detection of network traffic anomalies, including network intrusions, and the timely prevention and mitigation of cyberattacks. Among the most prevalent cyber threats are R2L,… More >

Displaying 1-10 on page 1 of 70. Per Page