Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Automated Colonic Polyp Detection and Classification Enabled Northern Goshawk Optimization with Deep Learning

    Mohammed Jasim Mohammed Jasim1, Bzar Khidir Hussan2, Subhi R. M. Zeebaree3,*, Zainab Salih Ageed4

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3677-3693, 2023, DOI:10.32604/cmc.2023.037363

    Abstract The major mortality factor relevant to the intestinal tract is the growth of tumorous cells (polyps) in various parts. More specifically, colonic polyps have a high rate and are recognized as a precursor of colon cancer growth. Endoscopy is the conventional technique for detecting colon polyps, and considerable research has proved that automated diagnosis of image regions that might have polyps within the colon might be used to help experts for decreasing the polyp miss rate. The automated diagnosis of polyps in a computer-aided diagnosis (CAD) method is implemented using statistical analysis. Nowadays, Deep Learning,… More >

  • Open Access

    ARTICLE

    Optimal Deep Transfer Learning Based Colorectal Cancer Detection and Classification Model

    Mahmoud Ragab1,2,3,*, Maged Mostafa Mahmoud4,5,6, Amer H. Asseri2,7, Hani Choudhry2,7, Haitham A. Yacoub8

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3279-3295, 2023, DOI:10.32604/cmc.2023.031037

    Abstract Colorectal carcinoma (CRC) is one such dispersed cancer globally and also prominent one in causing cancer-based death. Conventionally, pathologists execute CRC diagnosis through visible scrutinizing under the microscope the resected tissue samples, stained and fixed through Haematoxylin and Eosin (H&E). The advancement of graphical processing systems has resulted in high potentiality for deep learning (DL) techniques in interpretating visual anatomy from high resolution medical images. This study develops a slime mould algorithm with deep transfer learning enabled colorectal cancer detection and classification (SMADTL-CCDC) algorithm. The presented SMADTL-CCDC technique intends to appropriately recognize the occurrence of… More >

  • Open Access

    ARTICLE

    Big Data Analytics with Optimal Deep Learning Model for Medical Image Classification

    Tariq Mohammed Alqahtani*

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1433-1449, 2023, DOI:10.32604/csse.2023.025594

    Abstract In recent years, huge volumes of healthcare data are getting generated in various forms. The advancements made in medical imaging are tremendous owing to which biomedical image acquisition has become easier and quicker. Due to such massive generation of big data, the utilization of new methods based on Big Data Analytics (BDA), Machine Learning (ML), and Artificial Intelligence (AI) have become essential. In this aspect, the current research work develops a new Big Data Analytics with Cat Swarm Optimization based deep Learning (BDA-CSODL) technique for medical image classification on Apache Spark environment. The aim of… More >

  • Open Access

    ARTICLE

    Biomedical Osteosarcoma Image Classification Using Elephant Herd Optimization and Deep Learning

    Areej A. Malibari1, Jaber S. Alzahrani2, Marwa Obayya3, Noha Negm4,5, Mohammed Abdullah Al-Hagery6, Ahmed S. Salama7, Anwer Mustafa Hilal8,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6443-6459, 2022, DOI:10.32604/cmc.2022.031324

    Abstract Osteosarcoma is a type of malignant bone tumor that is reported across the globe. Recent advancements in Machine Learning (ML) and Deep Learning (DL) models enable the detection and classification of malignancies in biomedical images. In this regard, the current study introduces a new Biomedical Osteosarcoma Image Classification using Elephant Herd Optimization and Deep Transfer Learning (BOIC-EHODTL) model. The presented BOIC-EHODTL model examines the biomedical images to diagnose distinct kinds of osteosarcoma. At the initial stage, Gabor Filter (GF) is applied as a pre-processing technique to get rid of the noise from images. In addition,… More >

  • Open Access

    ARTICLE

    Hyperparameter Tuning Bidirectional Gated Recurrent Unit Model for Oral Cancer Classification

    K. Shankar1, E. Laxmi Lydia2, Sachin Kumar1,*, Ali S. Abosinne3, Ahmed alkhayyat4, A. H. Abbas5, Sarmad Nozad Mahmood6

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4541-4557, 2022, DOI:10.32604/cmc.2022.031247

    Abstract Oral Squamous Cell Carcinoma (OSCC) is a type of Head and Neck Squamous Cell Carcinoma (HNSCC) and it should be diagnosed at early stages to accomplish efficient treatment, increase the survival rate, and reduce death rate. Histopathological imaging is a wide-spread standard used for OSCC detection. However, it is a cumbersome process and demands expert’s knowledge. So, there is a need exists for automated detection of OSCC using Artificial Intelligence (AI) and Computer Vision (CV) technologies. In this background, the current research article introduces Improved Slime Mould Algorithm with Artificial Intelligence Driven Oral Cancer Classification… More >

  • Open Access

    ARTICLE

    Intelligent Classification Model for Biomedical Pap Smear Images on IoT Environment

    CSS Anupama1, T. J. Benedict Jose2, Heba F. Eid3, Nojood O Aljehane4, Fahd N. Al-Wesabi5,*, Marwa Obayya6, Anwer Mustafa Hilal7

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3969-3983, 2022, DOI:10.32604/cmc.2022.022701

    Abstract Biomedical images are used for capturing the images for diagnosis process and to examine the present condition of organs or tissues. Biomedical image processing concepts are identical to biomedical signal processing, which includes the investigation, improvement, and exhibition of images gathered using x-ray, ultrasound, MRI, etc. At the same time, cervical cancer becomes a major reason for increased women's mortality rate. But cervical cancer is an identified at an earlier stage using regular pap smear images. In this aspect, this paper devises a new biomedical pap smear image classification using cascaded deep forest (BPSIC-CDF) model… More >

  • Open Access

    ARTICLE

    Automated and Precise Event Detection Method for Big Data in Biomedical Imaging with Support Vector Machine

    Lufeng Yuan, Erlin Yao, Guangming Tan

    Computer Systems Science and Engineering, Vol.33, No.2, pp. 105-113, 2018, DOI:10.32604/csse.2018.33.105

    Abstract This paper proposes a machine learning based method which can detect certain events automatically and precisely in biomedical imaging. We detect one important and not well-defined event, which is called flash, in fluorescence images of Escherichia coli. Given a time series of images, first we propose a scheme to transform the event detection on region of interest (ROI) in images to a classification problem. Then with supervised human labeling data, we develop a feature selection technique to utilize support vector machine (SVM) to solve this classification problem. To reduce the time in training SVM model,… More >

Displaying 1-10 on page 1 of 7. Per Page