Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (408)
  • Open Access

    ARTICLE

    HATLedger: An Approach to Hybrid Account and Transaction Partitioning for Sharded Permissioned Blockchains

    Shuai Zhao, Zhiwei Zhang*, Junkai Wang, Ye Yuan, Guoren Wang

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073315 - 12 January 2026

    Abstract With the development of sharded blockchains, high cross-shard rates and load imbalance have emerged as major challenges. Account partitioning based on hashing and real-time load faces the issue of high cross-shard rates. Account partitioning based on historical transaction graphs is effective in reducing cross-shard rates but suffers from load imbalance and limited adaptability to dynamic workloads. Meanwhile, because of the coupling between consensus and execution, a target shard must receive both the partitioned transactions and the partitioned accounts before initiating consensus and execution. However, we observe that transaction partitioning and subsequent consensus do not require… More >

  • Open Access

    ARTICLE

    Secured-FL: Blockchain-Based Defense against Adversarial Attacks on Federated Learning Models

    Bello Musa Yakubu1,*, Nor Shahida Mohd Jamail 2, Rabia Latif 2, Seemab Latif 3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072426 - 12 January 2026

    Abstract Federated Learning (FL) enables joint training over distributed devices without data exchange but is highly vulnerable to attacks by adversaries in the form of model poisoning and malicious update injection. This work proposes Secured-FL, a blockchain-based defensive framework that combines smart contract–based authentication, clustering-driven outlier elimination, and dynamic threshold adjustment to defend against adversarial attacks. The framework was implemented on a private Ethereum network with a Proof-of-Authority consensus algorithm to ensure tamper-resistant and auditable model updates. Large-scale simulation on the Cyber Data dataset, under up to 50% malicious client settings, demonstrates Secured-FL achieves 6%–12% higher accuracy, More >

  • Open Access

    ARTICLE

    A Novel Signature-Based Secure Intrusion Detection for Smart Transportation Systems

    Hanaa Nafea1, Awais Qasim2, Sana Abdul Sattar2, Adeel Munawar3, Muhammad Nadeem Ali4, Byung-Seo Kim4,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072281 - 12 January 2026

    Abstract The increased connectivity and reliance on digital technologies have exposed smart transportation systems to various cyber threats, making intrusion detection a critical aspect of ensuring their secure operation. Traditional intrusion detection systems have limitations in terms of centralized architecture, lack of transparency, and vulnerability to single points of failure. This is where the integration of blockchain technology with signature-based intrusion detection can provide a robust and decentralized solution for securing smart transportation systems. This study tackles the issue of database manipulation attacks in smart transportation networks by proposing a signature-based intrusion detection system. The introduced More >

  • Open Access

    ARTICLE

    Blockchain and Smart Contracts with Barzilai-Borwein Intelligence for Industrial Cyber-Physical System

    Gowrishankar Jayaraman1, Ashok Kumar Munnangi2, Ramesh Sekaran3, Arunkumar Gopu3, Manikandan Ramachandran4,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071124 - 12 January 2026

    Abstract Industrial Cyber-Physical Systems (ICPSs) play a vital role in modern industries by providing an intellectual foundation for automated operations. With the increasing integration of information-driven processes, ensuring the security of Industrial Control Production Systems (ICPSs) has become a critical challenge. These systems are highly vulnerable to attacks such as denial-of-service (DoS), eclipse, and Sybil attacks, which can significantly disrupt industrial operations. This work proposes an effective protection strategy using an Artificial Intelligence (AI)-enabled Smart Contract (SC) framework combined with the Heterogeneous Barzilai–Borwein Support Vector (HBBSV) method for industrial-based CPS environments. The approach reduces run time… More >

  • Open Access

    REVIEW

    A Comprehensive Survey on Blockchain-Enabled Techniques and Federated Learning for Secure 5G/6G Networks: Challenges, Opportunities, and Future Directions

    Muhammad Asim1,*, Abdelhamied A. Ateya1, Mudasir Ahmad Wani1,2, Gauhar Ali1, Mohammed ElAffendi1, Ahmed A. Abd El-Latif1, Reshma Siyal3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070684 - 12 January 2026

    Abstract The growing developments in 5G and 6G wireless communications have revolutionized communications technologies, providing faster speeds with reduced latency and improved connectivity to users. However, it raises significant security challenges, including impersonation threats, data manipulation, distributed denial of service (DDoS) attacks, and privacy breaches. Traditional security measures are inadequate due to the decentralized and dynamic nature of next-generation networks. This survey provides a comprehensive review of how Federated Learning (FL), Blockchain, and Digital Twin (DT) technologies can collectively enhance the security of 5G and 6G systems. Blockchain offers decentralized, immutable, and transparent mechanisms for securing More >

  • Open Access

    ARTICLE

    A Blockchain-Based Hybrid Framework for Secure and Scalable Electronic Health Record Management in In-Patient Follow-Up Tracking

    Ahsan Habib Siam1, Md. Ehsanul Haque1, Fahmid Al Farid2, Anindita Sutradhar3, Jia Uddin4,*, Sarina Mansor2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.069718 - 12 January 2026

    Abstract As healthcare systems increasingly embrace digitalization, effective management of electronic health records (EHRs) has emerged as a critical priority, particularly in inpatient settings where data sensitivity and real-time access are paramount. Traditional EHR systems face significant challenges, including unauthorized access, data breaches, and inefficiencies in tracking follow-up appointments, which heighten the risk of misdiagnosis and medication errors. To address these issues, this research proposes a hybrid blockchain-based solution for securely managing EHRs, specifically designed as a framework for tracking inpatient follow-ups. By integrating QR code-enabled data access with a blockchain architecture, this innovative approach enhances… More >

  • Open Access

    ARTICLE

    Overcoming Dynamic Connectivity in Internet of Vehicles: A DAG Lattice Blockchain with Reputation-Based Incentive

    Xiaodong Zhang1, Wenhan Hou2,*, Juanjuan Wang3, Leixiao Li1, Pengfei Yue1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.072384 - 09 December 2025

    Abstract Blockchain offers a promising solution to the security challenges faced by the Internet of Vehicles (IoV). However, due to the dynamic connectivity of IoV, blockchain based on a single-chain structure or Directed Acyclic Graph (DAG) structure often suffer from performance limitations. The DAG lattice structure is a novel blockchain model in which each node maintains its own account chain, and only the node itself is allowed to update it. This feature makes the DAG lattice structure particularly suitable for addressing the challenges in dynamically connected IoV environment. In this paper, we propose a blockchain architecture… More >

  • Open Access

    ARTICLE

    Optimizing Resource Allocation in Blockchain Networks Using Neural Genetic Algorithm

    Malvinder Singh Bali1, Weiwei Jiang2,*, Saurav Verma3, Kanwalpreet Kour4, Ashwini Rao3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.070866 - 09 December 2025

    Abstract In recent years, Blockchain Technology has become a paradigm shift, providing Transparent, Secure, and Decentralized platforms for diverse applications, ranging from Cryptocurrency to supply chain management. Nevertheless, the optimization of blockchain networks remains a critical challenge due to persistent issues such as latency, scalability, and energy consumption. This study proposes an innovative approach to Blockchain network optimization, drawing inspiration from principles of biological evolution and natural selection through evolutionary algorithms. Specifically, we explore the application of genetic algorithms, particle swarm optimization, and related evolutionary techniques to enhance the performance of blockchain networks. The proposed methodologies More >

  • Open Access

    ARTICLE

    An Improved Blockchain-Based Cloud Auditing Scheme Using Dynamic Aggregate Signatures

    Haibo Lei1,2, Xu An Wang1,*, Wenhao Liu1, Lingling Wu1, Chao Zhang1, Weiwei Jiang3, Xiao Zou4

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-31, 2026, DOI:10.32604/cmc.2025.070030 - 09 December 2025

    Abstract With the rapid expansion of the Internet of Things (IoT), user data has experienced exponential growth, leading to increasing concerns about the security and integrity of data stored in the cloud. Traditional schemes relying on untrusted third-party auditors suffer from both security and efficiency issues, while existing decentralized blockchain-based auditing solutions still face shortcomings in correctness and security. This paper proposes an improved blockchain-based cloud auditing scheme, with the following core contributions: Identifying critical logical contradictions in the original scheme, thereby establishing the foundation for the correctness of cloud auditing; Designing an enhanced mechanism that… More >

  • Open Access

    ARTICLE

    Blockchain-Assisted Improved Cryptographic Privacy-Preserving FL Model with Consensus Algorithm for ORAN

    Raghavendra Kulkarni1, Venkata Satya Suresh kumar Kondeti1, Binu Sudhakaran Pillai2, Surendran Rajendran3,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.069835 - 10 November 2025

    Abstract The next-generation RAN, known as Open Radio Access Network (ORAN), allows for several advantages, including cost-effectiveness, network flexibility, and interoperability. Now ORAN applications, utilising machine learning (ML) and artificial intelligence (AI) techniques, have become standard practice. The need for Federated Learning (FL) for ML model training in ORAN environments is heightened by the modularised structure of the ORAN architecture and the shortcomings of conventional ML techniques. However, the traditional plaintext model update sharing of FL in multi-BS contexts is susceptible to privacy violations such as deep-leakage gradient assaults and inference. Therefore, this research presents a… More >

Displaying 1-10 on page 1 of 408. Per Page