Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    CFD Analysis of the Influence of Ionic Liquids on the Performances of a Refrigeration System

    Jianghao Niu*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.6, pp. 1003-1013, 2021, DOI:10.32604/fdmp.2021.015225 - 08 September 2021

    Abstract The falling film of an ionic liquid ([EMIM] [DMP] + H2O) and its effect on a refrigeration system are numerically simulated in the framework of a Volume of Fluid (VOF) method (as available in the ANSYS Fluent computational platform). The properties of the liquid film and the wall shear stress (WSS) are compared with those obtained for a potassium bromide solution. Different working conditions are considered. It is noted that the ionic liquid demonstrates a better absorption capability, with a coefficient of performance (COP) of 0.55. It is proved that the [EMIM] [DMP] + H2O ionic More >

  • Open Access

    ARTICLE

    CFD Analysis and Optimization of an Engine with a Restrictor Valve in the Intake System

    Huali Guo*, Zhilong Zhang*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.4, pp. 745-757, 2021, DOI:10.32604/fdmp.2021.014651 - 17 May 2021

    Abstract In some competitions the rules clearly state that all participating cars must install a restrictor valve structure in the intake system of the engine. The intake air volume of the engine is considerably affected due to the existence of such a valve. Indeed, a small interface diameter through which gas flows can lead to considerable flow resistance and loss. In this study, a four-cylinder engine for FSC racing is analyzed using a combined method based on numerical simulation and experiments. The analysis reveals that the main factors affecting the intake air volume are the intake More >

  • Open Access

    ARTICLE

    CHT/CFD Analysis of Thermal Sensitivity of a Transonic Film-Cooled Guide Vane

    Prasert Prapamonthon1,2,*, Soemsak Yooyen1, Suwin Sleesongsom1

    CMES-Computer Modeling in Engineering & Sciences, Vol.119, No.3, pp. 593-615, 2019, DOI:10.32604/cmes.2019.05579

    Abstract Thermal parameters are important variables that have great influence on life time of turbine vanes. Therefore, accurate prediction of the thermal parameters is essential. In this study, a numerical approach for conjugate heat transfer (CHT) and computational fluid dynamics (CFD) is used to investigate thermal sensitivity of a transonic guide vane which is fully film-cooled by 199 film holes. Thermal barrier coating (TBC), i.e., the typical TBC and a new one as the candidate TBC, and turbulence intensity (Tu), i.e., Tu=3.3%, 10% and 20%, are two variables used for the present study. At first the… More >

  • Open Access

    ARTICLE

    CFD Analysis of Pulsatile Flow and Non-Newtonian Behavior of Blood in Arteries

    P. Jhunjhunwala∗,†, P.M. Padole∗,‡, S.B. Thombre∗,§

    Molecular & Cellular Biomechanics, Vol.12, No.1, pp. 37-47, 2015, DOI:10.3970/mcb.2015.012.037

    Abstract CFD analysis plays an important role in the area of analysis of blood flow as in-vivo measurements of blood flow is costly and easily not accessible. This paper presents simulation of blood flow in healthy and stenosed coronary artery 2- D models. The simulation was done considering non-Newtonian behavior of blood and pulsatile nature of blood flow which is close to physical scenario. Pressure distribution, velocity distribution and wall shear were examined to understand their effect on Atherosclerosis. More >

  • Open Access

    ARTICLE

    A Practical Engineering Approach to the Design and Manufacturing of a mini kW BladeWind Turbine: Definition, optimization and CFD Analysis

    G. Frulla1, P. Gili1, M. Visone2, V. D’Oriano2,3, M. Lappa4

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.3, pp. 257-277, 2015, DOI:10.3970/fdmp.2015.011.257

    Abstract A practical engineering approach to the design of a 60 kW wind generator with improved performances is presented. The proposed approach relies on the use of a specific, "ad hoc'' developed software, OPTIWR (Optimization Software), expressly conceived to define an "optimum'' rotor configuration in the framework of the blade-element-momentum theory. Starting from an initial input geometric configuration (corresponding to an already existing 50 kW turbine) and for given values of the wind velocity Vwind and of the advance ratio X = Vwind/ΩR (where Ω is the blade rotational speed and R is the propeller radius), this software… More >

Displaying 11-20 on page 2 of 15. Per Page