Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (28)
  • Open Access

    ARTICLE

    Wavelet operational matrix method for solving fractional integral and differential equations of Bratu-type

    Lifeng Wang1, Yunpeng Ma1, Zhijun Meng1, Jun Huang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.4, pp. 353-368, 2013, DOI:10.3970/cmes.2013.092.353

    Abstract In this paper, a wavelet operational matrix method based on the second kind Chebyshev wavelet is proposed to solve the fractional integral and differential equations of Bratu-type. The second kind Chebyshev wavelet operational matrix of fractional order integration is derived. A truncated second kind Chebyshev wavelet series together with the wavelet operational matrix is utilized to reduce the fractional integral and differential equations of Bratu-type to a system of nonlinear algebraic equations. The convergence and the error analysis of the method are also given. Two examples are included to verify the validity and applicability of More >

  • Open Access

    ARTICLE

    Numerical solution of nonlinear fractional integral differential equations by using the second kind Chebyshev wavelets

    Yiming Chen1, Lu Sun1, Xuan Li1, Xiaohong Fu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.90, No.5, pp. 359-378, 2013, DOI:10.3970/cmes.2013.090.359

    Abstract By using the differential operator matrix and the product operation matrix of the second kind Chebyshev wavelets, a class of nonlinear fractional integral-differential equations is transformed into nonlinear algebraic equations, which makes the solution process and calculation more simple. At the same time, the maximum absolute error is obtained through error analysis. It also can be used under the condition that no exact solution exists. Numerical examples verify the validity of the proposed method. More >

  • Open Access

    ARTICLE

    The Mode Relation for Open Acoustic Waveguide Terminated by PML with Varied Sound Speed

    Jianxin Zhu, Zengsi Chen, Zheqi Shen

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.5, pp. 547-560, 2012, DOI:10.3970/cmes.2012.083.547

    Abstract An acoustic waveguide with continuously varying sound speed is discussed in this paper. When the waveguide is open along the depth, the perfectly matched layer (PML) is used to terminate the infinite domain. Since the sound speed is gradually varied, the density is assumed as constant in each fluid layer. For this waveguide, it is shown that the mode relation is derived by using the differential transfer matrix method (DTMM). To solve leaky and PML modes, Newton's iteration is applied, and Chebyshev pseudospectral method is used for obtaining initial guesses. The solutions are with high More >

  • Open Access

    ARTICLE

    Fictitious Time Integration Method of Fundamental Solutions with Chebyshev Polynomials for Solving Poisson-type Nonlinear PDEs

    Chia-Cheng Tsai1, Chein-Shan Liu2, Wei-Chung Yeih3

    CMES-Computer Modeling in Engineering & Sciences, Vol.56, No.2, pp. 131-152, 2010, DOI:10.3970/cmes.2010.056.131

    Abstract The fictitious time integration method (FTIM) previously developed by Liu and Atluri (2008a) is combined with the method of fundamental solutions and the Chebyshev polynomials to solve Poisson-type nonlinear PDEs. The method of fundamental solutions with Chebyshev polynomials (MFS-CP) is an exponentially-convergent meshless numerical method which is able to solving nonhomogeneous partial differential equations if the fundamental solution and the analytical particular solutions of the considered operator are known. In this study, the MFS-CP is extended to solve Poisson-type nonlinear PDEs by using the FTIM. In the solution procedure, the FTIM is introduced to convert More >

  • Open Access

    ARTICLE

    An Efficient Petrov-Galerkin Chebyshev Spectral Method Coupled with the Taylor-series Expansion Method of Moments for Solving the Coherent Structures Effect on Particle Coagulation in the Exhaust Pipe

    Chan T.L.1,2, Xie M.L.1,3, Cheung C.S.1

    CMES-Computer Modeling in Engineering & Sciences, Vol.51, No.3, pp. 191-212, 2009, DOI:10.3970/cmes.2009.051.191

    Abstract An efficient Petrov-Galerkin Chebyshev spectral method coupled with the Taylor-series expansion method of moments (TEMOM) was developed to simulate the effect of coherent structures on particle coagulation in the exhaust pipe. The Petrov-Galerkin Chebyshev spectral method was presented in detail focusing on the analyticity of solenoidal vector field used for the approximation of the flow. It satisfies the pole condition exactly at the origin, and can be used to expand the vector functions efficiently by using the solenoidal condition. This developed TEMOM method has no prior requirement for the particle size distribution (PSD). It is… More >

  • Open Access

    ARTICLE

    The Chebyshev Tau Spectral Method for the Solution of the Linear Stability Equations for Rayleigh-Bénard Convection with Melting

    Rubén Avila1, Eduardo Ramos2, S. N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.51, No.1, pp. 73-92, 2009, DOI:10.3970/cmes.2009.051.073

    Abstract A Chebyshev Tau numerical algorithm is presented to solve the perturbation equations that result from the linear stability analysis of the convective motion of a fluid layer that appears when an unconfined solid melts in the presence of gravity. The system of equations that describe the phenomenon constitute an eigenvalue problem whose accurate solution requires a robust method. We solve the equations with our method and briefly describe examples of the results. In the limit where the liquid-solid interface recedes at zero velocity the Rayleigh-Bénard solution is recovered. We show that the critical Rayleigh number Rac More >

  • Open Access

    ARTICLE

    The Particular Solutions of Chebyshev Polynomials for Reissner Plates under Arbitrary Loadings

    Chia-Cheng Tsai1

    CMES-Computer Modeling in Engineering & Sciences, Vol.45, No.3, pp. 249-272, 2009, DOI:10.3970/cmes.2009.045.249

    Abstract Analytical particular solutions of Chebyshev polynomials are obtained for problems of Reissner plates under arbitrary loadings, which are governed by three coupled second-ordered partial differential equation (PDEs). Our solutions can be written explicitly in terms of monomials. By using these formulas, we can obtain the approximate particular solution when the arbitrary loadings have been represented by a truncated series of Chebyshev polynomials. In the derivations of particular solutions, the three coupled second-ordered PDE are first transformed into a single six-ordered PDE through the Hörmander operator decomposition technique. Then the particular solutions of this six-ordered PDE More >

  • Open Access

    ARTICLE

    Particular Solutions of Chebyshev Polynomials for Polyharmonic and Poly-Helmholtz Equations

    Chia-Cheng Tsai1

    CMES-Computer Modeling in Engineering & Sciences, Vol.27, No.3, pp. 151-162, 2008, DOI:10.3970/cmes.2008.027.151

    Abstract In this paper we develop analytical particular solutions for the polyharmonic and the products of Helmholtz-type partial differential operators with Chebyshev polynomials at right-hand side. Our solutions can be written explicitly in terms of either monomial or Chebyshev bases. By using these formulas, we can obtain the approximate particular solution when the right-hand side has been represented by a truncated series of Chebyshev polynomials. These formulas are further implemented to solve inhomogeneous partial differential equations (PDEs) in which the homogeneous solutions are complementarily solved by the method of fundamental solutions (MFS). Numerical experiments, which include More >

Displaying 21-30 on page 3 of 28. Per Page