Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,292)
  • Open Access

    ARTICLE

    Deep Learning-Enhanced Brain Tumor Prediction via Entropy-Coded BPSO in CIELAB Color Space

    Mudassir Khalil1, Muhammad Imran Sharif2,*, Ahmed Naeem3, Muhammad Umar Chaudhry1, Hafiz Tayyab Rauf4,*, Adham E. Ragab5

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2031-2047, 2023, DOI:10.32604/cmc.2023.043687

    Abstract Early detection of brain tumors is critical for effective treatment planning. Identifying tumors in their nascent stages can significantly enhance the chances of patient survival. While there are various types of brain tumors, each with unique characteristics and treatment protocols, tumors are often minuscule during their initial stages, making manual diagnosis challenging, time-consuming, and potentially ambiguous. Current techniques predominantly used in hospitals involve manual detection via MRI scans, which can be costly, error-prone, and time-intensive. An automated system for detecting brain tumors could be pivotal in identifying the disease in its earliest phases. This research applies several data augmentation techniques… More >

  • Open Access

    ARTICLE

    Visualization for Explanation of Deep Learning-Based Fault Diagnosis Model Using Class Activation Map

    Youming Guo, Qinmu Wu*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1489-1514, 2023, DOI:10.32604/cmc.2023.042313

    Abstract Permanent magnet synchronous motor (PMSM) is widely used in various production processes because of its high efficiency, fast reaction time, and high power density. With the continuous promotion of new energy vehicles, timely detection of PMSM faults can significantly reduce the accident rate of new energy vehicles, further enhance consumers’ trust in their safety, and thus promote their popularity. Existing fault diagnosis methods based on deep learning can only distinguish different PMSM faults and cannot interpret and analyze them. Convolutional neural networks (CNN) show remarkable accuracy in image data analysis. However, due to the “black box” problem in deep learning… More >

  • Open Access

    ARTICLE

    Swin-PAFF: A SAR Ship Detection Network with Contextual Cross-Information Fusion

    Yujun Zhang*, Dezhi Han, Peng Chen

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2657-2675, 2023, DOI:10.32604/cmc.2023.042311

    Abstract Synthetic Aperture Radar (SAR) image target detection has widespread applications in both military and civil domains. However, SAR images pose challenges due to strong scattering, indistinct edge contours, multi-scale representation, sparsity, and severe background interference, which make the existing target detection methods in low accuracy. To address this issue, this paper proposes a multi-scale fusion framework (Swin-PAFF) for SAR target detection that utilizes the global context perception capability of the Transformer and the multi-layer feature fusion learning ability of the feature pyramid structure (FPN). Firstly, to tackle the issue of inadequate perceptual image context information in SAR target detection, we… More >

  • Open Access

    ARTICLE

    Optimized Deep Learning Approach for Efficient Diabetic Retinopathy Classification Combining VGG16-CNN

    Heba M. El-Hoseny1,*, Heba F. Elsepae2, Wael A. Mohamed2, Ayman S. Selmy2

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1855-1872, 2023, DOI:10.32604/cmc.2023.042107

    Abstract Diabetic retinopathy is a critical eye condition that, if not treated, can lead to vision loss. Traditional methods of diagnosing and treating the disease are time-consuming and expensive. However, machine learning and deep transfer learning (DTL) techniques have shown promise in medical applications, including detecting, classifying, and segmenting diabetic retinopathy. These advanced techniques offer higher accuracy and performance. Computer-Aided Diagnosis (CAD) is crucial in speeding up classification and providing accurate disease diagnoses. Overall, these technological advancements hold great potential for improving the management of diabetic retinopathy. The study’s objective was to differentiate between different classes of diabetes and verify the… More >

  • Open Access

    ARTICLE

    Leveraging Blockchain with Optimal Deep Learning-Based Drug Supply Chain Management for Pharmaceutical Industries

    Shanthi Perumalsamy, Venkatesh Kaliyamurthy*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2341-2357, 2023, DOI:10.32604/cmc.2023.040269

    Abstract Due to its complexity and involvement of numerous stakeholders, the pharmaceutical supply chain presents many challenges that companies must overcome to deliver necessary medications to patients efficiently. The pharmaceutical supply chain poses different challenging issues, encompasses supply chain visibility, cold-chain shipping, drug counterfeiting, and rising prescription drug prices, which can considerably surge out-of-pocket patient costs. Blockchain (BC) offers the technical base for such a scheme, as it could track legitimate drugs and avoid fake circulation. The designers presented the procedure of BC with fabric for creating a secured drug supply-chain management (DSCM) method. With this motivation, the study presents a… More >

  • Open Access

    ARTICLE

    Fake News Detection Using Machine Learning and Deep Learning Methods

    Ammar Saeed1,*, Eesa Al Solami2

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2079-2096, 2023, DOI:10.32604/cmc.2023.030551

    Abstract The evolution of the internet and its accessibility in the twenty-first century has resulted in a tremendous increase in the use of social media platforms. Some social media sources contribute to the propagation of fake news that has no real validity, but they accumulate over time and begin to appear in the feed of every consumer producing even more ambiguity. To sustain the value of social media, such stories must be distinguished from the true ones. As a result, an automated system is required to save time and money. The classification of fake news and misinformation from social media data… More >

  • Open Access

    ARTICLE

    Adaptive Deep Learning Model to Enhance Smart Greenhouse Agriculture

    Medhat A. Tawfeek1,2, Nacim Yanes3,4, Leila Jamel5,*, Ghadah Aldehim5, Mahmood A. Mahmood1,6

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2545-2564, 2023, DOI:10.32604/cmc.2023.042179

    Abstract The trend towards smart greenhouses stems from various factors, including a lack of agricultural land area owing to population concentration and housing construction on agricultural land, as well as water shortages. This study proposes building a full farming adaptation model that depends on current sensor readings and available datasets from different agricultural research centers. The proposed model uses a one-dimensional convolutional neural network (CNN) deep learning model to control the growth of strategic crops, including cucumber, pepper, tomato, and bean. The proposed model uses the Internet of Things (IoT) to collect data on agricultural operations and then uses this data… More >

  • Open Access

    ARTICLE

    Optimizing Fully Convolutional Encoder-Decoder Network for Segmentation of Diabetic Eye Disease

    Abdul Qadir Khan1, Guangmin Sun1,*, Yu Li1, Anas Bilal2, Malik Abdul Manan1

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2481-2504, 2023, DOI:10.32604/cmc.2023.043239

    Abstract In the emerging field of image segmentation, Fully Convolutional Networks (FCNs) have recently become prominent. However, their effectiveness is intimately linked with the correct selection and fine-tuning of hyperparameters, which can often be a cumbersome manual task. The main aim of this study is to propose a more efficient, less labour-intensive approach to hyperparameter optimization in FCNs for segmenting fundus images. To this end, our research introduces a hyperparameter-optimized Fully Convolutional Encoder-Decoder Network (FCEDN). The optimization is handled by a novel Genetic Grey Wolf Optimization (G-GWO) algorithm. This algorithm employs the Genetic Algorithm (GA) to generate a diverse set of… More >

  • Open Access

    ARTICLE

    A Deep Learning Based Sentiment Analytic Model for the Prediction of Traffic Accidents

    Nadeem Malik1,*, Saud Altaf1, Muhammad Usman Tariq2, Ashir Ahmed3, Muhammad Babar4

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1599-1615, 2023, DOI:10.32604/cmc.2023.040455

    Abstract The severity of traffic accidents is a serious global concern, particularly in developing nations. Knowing the main causes and contributing circumstances may reduce the severity of traffic accidents. There exist many machine learning models and decision support systems to predict road accidents by using datasets from different social media forums such as Twitter, blogs and Facebook. Although such approaches are popular, there exists an issue of data management and low prediction accuracy. This article presented a deep learning-based sentiment analytic model known as Extra-large Network Bi-directional long short term memory (XLNet-Bi-LSTM) to predict traffic collisions based on data collected from… More >

  • Open Access

    ARTICLE

    A Differential Privacy Federated Learning Scheme Based on Adaptive Gaussian Noise

    Sanxiu Jiao1, Lecai Cai2,*, Xinjie Wang1, Kui Cheng2, Xiang Gao3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1679-1694, 2024, DOI:10.32604/cmes.2023.030512

    Abstract As a distributed machine learning method, federated learning (FL) has the advantage of naturally protecting data privacy. It keeps data locally and trains local models through local data to protect the privacy of local data. The federated learning method effectively solves the problem of artificial Smart data islands and privacy protection issues. However, existing research shows that attackers may still steal user information by analyzing the parameters in the federated learning training process and the aggregation parameters on the server side. To solve this problem, differential privacy (DP) techniques are widely used for privacy protection in federated learning. However, adding… More > Graphic Abstract

    A Differential Privacy Federated Learning Scheme Based on Adaptive Gaussian Noise

Displaying 1-10 on page 1 of 1292. Per Page