Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access


    Direct Numerical Simulation of Electroconvection near an Ion-Selective Membrane Under Magnetic Field

    Jinxiang Cai1, Gaojin Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09833

    Abstract We study the effect of magnetic field on the electro-hydrodynamics of ion transport in a liquid electrolyte near an ion-selective membrane using direct numerical simulation. Ion transport across the ion selective membrane plays an essential role in many electro-hydrodynamic and electro-microfluidic systems. Above a critical voltage, electroconvective instability occurs near the membrane surface, causing vortical flows in liquid electrolyte which enhances the mixing of cations and anions, increases the ion transport efficiency and causes current fluctuations. When the system is under a magnetic field, the Lorentz force generated by the ion movement can significantly change the flow of electrolyte solution.… More >

  • Open Access


    Effect of Particle Orientation on Heat Transfer in Arrays of Prolate Particles

    Romana Basit1, Xinyang Li1, Zheqing Huang1, Qiang Zhou1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1509-1526, 2023, DOI:10.32604/cmes.2023.025308

    Abstract Direct Numerical Simulations have been carried out to study the forced convection heat transfer of flow through fixed prolate particles for a variety of aspect ratios ar = {5/4, 5/3, 5/1} with Reynolds number (Re) up to 100. Three variations of the solid volume fraction c = {0.1, 0.2, 0.3} with four Hermans orientation factors S = {−0.5, 0, 0.5, 1} are studied. It has been found that changes in S cause prominent variations in the Nusselt number. In general, Nusselt number increases with the decrease of S. For all three aspect ratios, the Nusselt number remains a linear function… More > Graphic Abstract

    Effect of Particle Orientation on Heat Transfer in Arrays of Prolate Particles

  • Open Access


    Estimation of Turbulent Flow from Wall Information via Machine Learning

    Yousuke Shimoda1, Takahiro Matsumori1, Kazuki Sato1, Tatsuro Hirano1, Naoya Fukushima1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.23, No.1, pp. 16-16, 2021, DOI:10.32604/icces.2021.08337

    Abstract Along with rapid development of computer technologies, a wide range of turbulent flows have been investigated by direct numerical simulations and the big databases have been built throughout the world. From the DNS results, we can investigate turbulent characteristics in three-dimensional space and time. In the laboratory experiment, we can apply sophisticated laser diagnostics technique to measure flow field non-invasively in research. On actual equipment, it is very difficult to get the flow field data away from the wall. We can measure only wall information, such as wall shear stresses and pressure. When we predict turbulence from wall information, we… More >

  • Open Access


    Direct Numerical Simulations for Colloidal Dispersions

    Ryoichi Yamamoto

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.2, pp. 37-38, 2011, DOI:10.3970/icces.2011.018.037

    Abstract We developed a unique method for direct numerical simulations (DNS) of dense colloidal dispersions [3, 5]. This method, called the smoothed profile method (SPM), enables us to compute the time evolutions of colloidal particles, ions, and host fluids simultaneously by solving Newton, advection-diffusion, and Navier-Stokes equations so that the electro- hydrodynamic couplings can be fully taken into account. We have applied the SPM successfully for simulating dynamics of various particle dispersions, including colloids in liquid crystals [1, 2], electrophoresis of charged colloids [4, 5], particle diffusion in fluids [7, 8], dispersion rheology [9, 11], tumbling chain in shear flow [10],… More >

  • Open Access


    Towards a Numerical Benchmark for 3D Low Mach Number Mixed Flows in a Rectangular Channel Heated from Below

    G. Accary1, S. Meradji2, D. Morvan2, D. Fougère2

    FDMP-Fluid Dynamics & Materials Processing, Vol.4, No.4, pp. 263-270, 2008, DOI:10.3970/fdmp.2008.004.263

    Abstract In the literature, only few references have dealt with mixed-convection flows in the low Mach number approximation. For this reason, in the present study we propose to extend the standard 3D benchmark for mixed convection in a rectangular channel heated from below (Medale and Nicolas, 2005) to the case of large temperature variations (for which the Boussinesq approximation is no longer valid). The Navier-Stokes equations, obtained under the assumption of a low Mach number flow, are solved using a finite volume method. The results, corresponding to the steady-state case of the benchmark, lead to the idea of launching a call… More >

Displaying 1-10 on page 1 of 5. Per Page