Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,626)
  • Open Access

    ARTICLE

    SW-DDFT: Parallel Optimization of the Dynamical Density Functional Theory Algorithm Based on Sunway Bluelight II Supercomputer

    Xiaoguang Lv1,2, Tao Liu1,2,*, Han Qin1,2, Ying Guo1,2, Jingshan Pan1,2, Dawei Zhao1,2, Xiaoming Wu1,2, Meihong Yang1,2

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1417-1436, 2025, DOI:10.32604/cmc.2025.063852 - 09 June 2025

    Abstract The Dynamical Density Functional Theory (DDFT) algorithm, derived by associating classical Density Functional Theory (DFT) with the fundamental Smoluchowski dynamical equation, describes the evolution of inhomogeneous fluid density distributions over time. It plays a significant role in studying the evolution of density distributions over time in inhomogeneous systems. The Sunway Bluelight II supercomputer, as a new generation of China’s developed supercomputer, possesses powerful computational capabilities. Porting and optimizing industrial software on this platform holds significant importance. For the optimization of the DDFT algorithm, based on the Sunway Bluelight II supercomputer and the unique hardware architecture… More >

  • Open Access

    ARTICLE

    Advancing Code Obfuscation: Novel Opaque Predicate Techniques to Counter Dynamic Symbolic Execution

    Yan Cao#, Zhizhuang Zhou#, Yan Zhuang*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1545-1565, 2025, DOI:10.32604/cmc.2025.062743 - 09 June 2025

    Abstract Code obfuscation is a crucial technique for protecting software against reverse engineering and security attacks. Among various obfuscation methods, opaque predicates, which are recognized as flexible and promising, are widely used to increase control-flow complexity. However, traditional opaque predicates are increasingly vulnerable to Dynamic Symbolic Execution (DSE) attacks, which can efficiently identify and eliminate them. To address this issue, this paper proposes a novel approach for anti-DSE opaque predicates that effectively resists symbolic execution-based deobfuscation. Our method introduces two key techniques: single-way function opaque predicates, which leverage hash functions and logarithmic transformations to prevent constraint More >

  • Open Access

    ARTICLE

    A Semi-Lightweight Multi-Feature Integration Architecture for Micro-Expression Recognition

    Mengqi Li, Xiaodong Huang*, Lifeng Wu

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 975-995, 2025, DOI:10.32604/cmc.2025.062621 - 09 June 2025

    Abstract Micro-expressions, fleeting involuntary facial cues lasting under half a second, reveal genuine emotions and are valuable in clinical diagnosis and psychotherapy. Real-time recognition on resource-constrained embedded devices remains challenging, as current methods struggle to balance performance and efficiency. This study introduces a semi-lightweight multifunctional network that enhances real-time deployment and accuracy. Unlike prior simplistic feature fusion techniques, our novel multi-feature fusion strategy leverages temporal, spatial, and differential features to better capture dynamic changes. Enhanced by Residual Network (ResNet) architecture with channel and spatial attention mechanisms, the model improves feature representation while maintaining a lightweight design. More >

  • Open Access

    ARTICLE

    Numerical Analysis of the Aerodynamic Performance of an Ahmed Body Fitted with Spoilers of Different Opening Areas

    Haichao Zhou*, Wei Zhang, Tinghui Huang, Haoran Li

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1113-1131, 2025, DOI:10.32604/fdmp.2025.064991 - 30 May 2025

    Abstract The configuration of a spoiler plays a crucial role in the aerodynamics of a vehicle. In particular, investigating the impact of spoiler design on aerodynamic performance is essential for effectively reducing drag and optimizing efficiency. This study focuses on the 35° Ahmed body as the test model and examines six different spoiler types mounted on its slant surface. Using the Lattice Boltzmann Method (LBM) in XFlow and the Large Eddy Simulation (LES) technique, the aerodynamic effects of these spoilers were analyzed. The numerical approach was validated against published experimental data. Results indicate that aerodynamic drag More >

  • Open Access

    ARTICLE

    Analytical Investigation of MFD Viscosity and Ohmic Heating in MHD Boundary Layers of Jeffrey Fluid

    K. Sinivasan1, N. Vishnu Ganesh1,*, G. Hirankumar2, M. Al-Mdallal Qasem3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1029-1049, 2025, DOI:10.32604/fdmp.2025.064503 - 30 May 2025

    Abstract In this study, an analytical investigation is carried out to assess the impact of magnetic field-dependent (MFD) viscosity on the momentum and heat transfers inside the boundary layer of a Jeffrey fluid flowing over a horizontally elongating sheet, while taking into account the effects of ohmic dissipation. By applying similarity transformations, the original nonlinear governing equations with partial derivatives are transformed into ordinary differential equations. Analytical expressions for the momentum and energy equations are derived, incorporating the influence of MFD viscosity on the Jeffrey fluid. Then the impact of different parameters is assessed, including magnetic More >

  • Open Access

    ARTICLE

    Effect of Libration on Fluid Flow and Granular Medium Dynamics in a Rotating Cylindrical Annulus

    Denis Polezhaev*, Alexey Vjatkin, Victor Kozlov

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1051-1061, 2025, DOI:10.32604/fdmp.2025.062000 - 30 May 2025

    Abstract The dynamics of fluid and non-buoyant particles in a librating horizontal annulus is studied experimentally. In the absence of librations, the granular material forms a cylindrical layer near the outer boundary of the annulus and undergoes rigid-body rotation with the fluid and the annulus. It is demonstrated that the librational liquefaction of the granular material results in pattern formation. This self-organization process stems from the excitation of inertial modes induced by the oscillatory motion of liquefied granular material under the influence of the gravitational force. The inertial wave induces vortical fluid flow which entrains particles More > Graphic Abstract

    Effect of Libration on Fluid Flow and Granular Medium Dynamics in a Rotating Cylindrical Annulus

  • Open Access

    ARTICLE

    The Influence of an Imposed Jet and Front and Rear Wall Modification on Aerodynamic Noise in High-Speed Train Cavities

    Yangyang Cao, Jiye Zhang*, Jiawei Shi, Yao Zhang

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1079-1098, 2025, DOI:10.32604/fdmp.2025.060429 - 30 May 2025

    Abstract The pantograph area is a critical source of aerodynamic noise in high-speed trains, generating noise both directly and through its cavity, a factor that warrants considerable attention. One effective method for reducing aerodynamic noise within the pantograph cavity involves the introduction of a jet at the leading edge of the cavity. This study investigates the mechanisms driving cavity aerodynamic noise under varying jet velocities, using Improved Delayed Detached Eddy Simulation (IDDES) and Ffowcs Williams-Hawkings (FW-H) equations. The numerical simulations reveal that an increase in jet velocity results in a higher elevation of the shear layer… More >

  • Open Access

    ARTICLE

    Dynamic Response of Bridge Pile Foundations under Pile-Soil-Fault Interaction in Seismic Areas

    Yujie Li1, Zhongju Feng1,*, Fuchun Wang1, Jiang Guan2, Xiaoqian Ma3

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1549-1573, 2025, DOI:10.32604/cmes.2025.064785 - 30 May 2025

    Abstract To study the dynamic response rules of pile foundations of mega-bridges over faults in strong seismic areas, a finite element model of the pile foundation-soil-fault interaction of the Haiwen Bridge is established. The 0.2–0.6 g peak acceleration of the 5010 seismic waves is input to study the effect of the seismic wave of different intensities and the distance changes between the fault and the pile foundation on the dynamic response of the pile body. The results show that the soil layer covering the bedrock amplifies the peak pile acceleration, and the amplifying effect decreases with… More >

  • Open Access

    ARTICLE

    Analytical Solutions for 1-Dimensional Peridynamic Systems by Considering the Effect of Damping

    Zhenghao Yang1, Erkan Oterkus2,*, Selda Oterkus2, Konstantin Naumenko1

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2491-2508, 2025, DOI:10.32604/cmes.2025.062998 - 30 May 2025

    Abstract For the solution of peridynamic equations of motion, a meshless approach is typically used instead of utilizing semi-analytical or mesh-based approaches. In contrast, the literature has limited analytical solutions. This study develops a novel analytical solution for one-dimensional peridynamic models, considering the effect of damping. After demonstrating the details of the analytical solution, various demonstration problems are presented. First, the free vibration of a damped system is considered for under-damped and critically damped conditions. Peridynamic solutions and results from the classical theory are compared against each other, and excellent agreement is observed between the two More >

  • Open Access

    ARTICLE

    Shock-Capturing Particle Hydrodynamics with Reproducing Kernels

    Stephan Rosswog1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1713-1741, 2025, DOI:10.32604/cmes.2025.062063 - 30 May 2025

    Abstract We present and explore a new shock-capturing particle hydrodynamics approach. Our starting point is a commonly used discretization of smoothed particle hydrodynamics. We enhance this discretization with Roe’s approximate Riemann solver, we identify its dissipative terms, and in these terms, we use slope-limited linear reconstruction. All gradients needed for our method are calculated with linearly reproducing kernels that are constructed to enforce the two lowest-order consistency relations. We scrutinize our reproducing kernel implementation carefully on a “glass-like” particle distribution, and we find that constant and linear functions are recovered to machine precision. We probe our More >

Displaying 1-10 on page 1 of 1626. Per Page