Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19,008)
  • Open Access

    ARTICLE

    Engineering Nanostructured Probes for Sensitive Intracellular Gene Detection

    Gang Bao1, Andrew Tsourkas2, Philip J. Santangelo2

    Molecular & Cellular Biomechanics, Vol.1, No.1, pp. 23-36, 2004, DOI:10.3970/mcb.2004.001.023

    Abstract The ability to detect, localize, quantify and monitor the expression of specific genes in living cells in real-time will offer unprecedented opportunities for advancement in molecular biology, disease pathophysiology, drug discovery, and medical diagnostics. However, current methods for quantifying gene expression employ either selective amplification (as in PCR) or saturation binding followed by removal of the excess probes (as in microarrays and in situ hybridization) to achieve specificity. Neither approach is applicable when detecting gene transcripts within living cells. Here we review the recent development in engineering nanostructured molecular probes for gene detection in vivo, describe More >

  • Open Access

    ARTICLE

    Y.C. "Bert'' Fung: The Father of Modern Biomechanics

    Ghassan S. Kassab1

    Molecular & Cellular Biomechanics, Vol.1, No.1, pp. 5-22, 2004, DOI:10.3970/mcb.2004.001.005

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Weight-Minimization of Sandwich Structures by a Heuristic Topology Optimization Algorithm

    C. Tapp1, W. Hansel, C. Mittelstedt, W. Becker2

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.6, pp. 563-574, 2004, DOI:10.3970/cmes.2004.005.563

    Abstract A heuristic algorithm for the weight minimization of sandwich plates is presented. The method is based on a preexisting algorithm for the layerwise topology optimization of symmetric laminates under in-plane loads. The presented algorithm uses structural analyses based on finite elements and explicitly accounts for the special sandwich situation. During the optimization procedure the algorithm adds or subtracts material from the layers of the face sheets and the core of the sandwich plate in regions of high or low stresses respectively. The orientation angles of the layers of the sandwich facings are not varied inorder More >

  • Open Access

    ARTICLE

    Directly Derived Non-Hyper-Singular Boundary Integral Equations for Acoustic Problems, and Their Solution through Petrov-Galerkin Schemes

    Z.Y. Qian1, Z.D. Han1, S.N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.6, pp. 541-562, 2004, DOI:10.3970/cmes.2004.005.541

    Abstract Novel non-hyper-singular [i.e., only strongly-singular] boundary-integral-equations for the gradients of the acoustic velocity potential, involving only O(r−2) singularities at the surface of a 3-D body, are derived, for solving problems of acoustics governed by the Helmholtz differential equation. The gradients of the fundamental solution to the Helmholtz differential equation for the velocity potential, are used in this derivation. Several basic identities governing the fundamental solution to the Helmholtz differential equation for velocity potential, are also derived. Using these basic identities, the strongly singular integral equations for the potential and its gradients [denoted here as φ-BIE, and… More >

  • Open Access

    ARTICLE

    Atomistic Simulations of Dislocation-Void Interactions using Green’s Function Boundary Relaxation

    Xiangli Liu1, S. I. Golubov1, C. H. Woo1,2, Hanchen Huang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.6, pp. 527-540, 2004, DOI:10.3970/cmes.2004.005.527

    Abstract A Green’s function technique is developed for the relaxation of simulation cell boundaries in the modelling of dislocation interactions using molecular dynamics. This method allows the replacement of fixed or periodical boundary conditions with flexible boundary conditions, thus minimizing the artificial effects due to images forces introduced by the fixed boundary condition, or the periodic repetition of simulation cells. The effectiveness of the Green’s function in the removal of the fixed boundary image forces is first checked in the atomistic simulation involving the glide of the a/2<110> dislocation in bcc tungsten. This method is then applied More >

  • Open Access

    ARTICLE

    Finite Element Modeling of Thin Layers

    Dan Givoli1

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.6, pp. 497-514, 2004, DOI:10.3970/cmes.2004.005.497

    Abstract Very thin layers with material properties which significantly differ from those of the surrounding medium appear in a variety of applications. Traditionally there are two extreme ways of handling such layers in finite element analysis: either they are fully modelled or they are totally ignored. The former option is often very expensive computationally, while the latter may lead to significant inaccuracies. Here a special technique of modeling thin layers is devised within the framework of the finite element method. This technique constitutes a prudent compromise between the two extremes mentioned above. The layer is replaced More >

  • Open Access

    ARTICLE

    The Generalized Interpolation Material Point Method

    S. G. Bardenhagen1,2, E. M. Kober3

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.6, pp. 477-496, 2004, DOI:10.3970/cmes.2004.005.477

    Abstract The Material Point Method (MPM) discrete solution procedure for computational solid mechanics is generalized using a variational form and a Petrov–Galerkin discretization scheme, resulting in a family of methods named the Generalized Interpolation Material Point(GIMP) methods. The generalizationpermits identification with aspects of other point or node based discrete solution techniques which do not use a body–fixed grid, i.e. the “meshless methods”. Similarities are noted and some practical advantages relative to some of these methods are identified. Examples are used to demonstrate and explain numerical artifact noise which can be expected inMPM calculations. Thisnoiseresultsin non-physical local More >

  • Open Access

    ARTICLE

    Thermal Fluid Transport Phenomena in Concentric Annulus with Movement and Rotation of Inner Core

    S. Torii1

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.3, pp. 257-268, 2004, DOI:10.3970/cmes.2004.005.257

    Abstract A numerical study is performed to investigate the thermal fluid-flow transport phenomena in the concentric annulus with a slightly heated rotating inner core moving in the flow direction and a stationary insulated outer cylinder. Emphasis is placed on the effects of the axial rotation and streamwise movement of inner core on the flow structure and heat transfer performance. A k-ε turbulence model is employed to determine the turbulent viscosity and the turbulent kinetic energy. The turbulent heat flux is expressed by Boussinesq approximation in which the eddy diffusivity for heat is determined using two-equation heat… More >

  • Open Access

    ARTICLE

    Construction of Integral Objective Function/Fitness Function of Multi-Objective/Multi-Disciplinary Optimization

    Z. Q. Zhu1, Z. Liu1, X. L. Wang1, R. X. Yu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.6, pp. 567-576, 2004, DOI:10.3970/cmes.2004.006.567

    Abstract To extend an available mono-objective optimization method to multi-objective/multi-disciplinary optimization, the construction of a suitable integral objective function (in gradient based deterministic method-DM) or fitness function (in genetic algorithm-GA) is important. An auto-adjusting weighted object optimization (AWO) method in DM is suggested to improve the available weighted sum method (linear combined weighted object optimizationLWO method). Two formulae of fitness function in GA are suggested for two kinds of design problems. Flow field solution is obtained by solving Euler equations. Electromagnetic field solution is obtained by solving Maxwell equations. Bi-disciplinary optimization computation is carried out by More >

  • Open Access

    ARTICLE

    Aerodynamic Design of Turbomachinery Cascades Using an Enhanced Time-Marching Finite Volume Method

    J. C. Páscoa1, A. C. Mendes1, L. M. C. Gato2, R. Elder3

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.6, pp. 537-546, 2004, DOI:10.3970/cmes.2004.006.537

    Abstract The paper presents an aerodynamic design method for turbomachinery cascades of blades. The prescribed conditions are the aerodynamic blade load and the blade thickness distributions. An iterative procedure was implemented, based on the solution of the Euler equations, to seek the blade geometry that provides the specified design conditions. A central finite-volume explicit time-marching scheme is used to solve the Euler equations in two-dimensional flow. The numerical scheme uses an adaptive nonlinear artificial dissipation term based on the limiter theory. Starting with the results from the flow analysis through an initially guessed cascade geometry, the More >

Displaying 18751-18760 on page 1876 of 19008. Per Page